Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Betekhtin

.pdf
Скачиваний:
26
Добавлен:
21.05.2015
Размер:
6.89 Mб
Скачать

Раздел IV

ОКИСЛЫ (ОКСИДЫ)

Общие замечания. В данный раздел включены простейшие соедине ния металлов и металлоидов с кислородом и гидроксилом. Кислородные соли мы будем рассматривать отдельно.

Кислород, как известно, в химических реакциях, совершающихся

вземной коре, играет исключительную роль не только в неорганической, но и в органической минералогии. Кислородные соединения как в виде простых окислов, так и в виде разнообразных кислородных солей всюду

вземной коре резко преобладают. Напомним, что среднее весовое содер жание кислорода в земной коре составляет 47,0 %.

Впростейшие соединения с кислородом в том или ином виде входит около 40 элементов (рис. 141).

Рис. 141. Элементы, для которых характерны природные окислы и гидроокислы (набраны полужирным шрифтом)

Общее весовое количество свободных окислов в литосфере (за исклю чением гидросферы и атмосферы) составляет около 17 %. Из них на долю одного только кремнезема приходится 12,6 %. Окислы и гидроокислы железа составляют 3,9 %. Из остальных наибольшее значение имеют окис лы и гидроокислы алюминия, марганца, титана и хрома.

Условия образования и химические особенности соединений. Основ ная масса разнообразных по составу окислов и гидроокислов сосредоточе на в самых верхних частях земной коры — на границе ее с атмосферой, содержащей свободный кислород. Глубина интенсивного проникновения свободного кислорода в земную кору контролируется в основном уровнем

292

Описательная часть

грунтовых вод. Кора выветривания горных пород вместе с зонами окисле ния рудных месторождений является главной ареной химических реакций, приводящих к новообразованиям, среди которых доминирующую роль играют окислы и гидроокислы металлов.

Весьма существенное значение при этом имеют не только свободный кислород воздуха, проникающий с поверхности в земную оболочку, но также дождевые просачивающиеся воды с растворенными в них кисло родом и углекислым газом. Установлено, что в дождевой воде, насыщен ной воздухом, на 1 л в среднем приходится 25–30 см3 газа, в составе кото рого около 30 % кислорода, 60 % азота и 10 % углекислоты. Если мы сравним эти данные с составом воздуха, то увидим, что дождевая вода значительно обогащена кислородом и особенно углекислотой. По мере того как эта дождевая вода спускается к уровню грунтовых вод, ее окис ляющее действие постепенно ослабевает. Свободный кислород по пути просачивания дождевой воды расходуется на окислительные реакции. Особенно сильно этот расход проявляется при окислении сульфидов и им подобных соединений с образованием на первой стадии сернокислых, мышьяково кислых и прочих солей.

Сравнительно легко подвергаются окислению также такие кислород ные соединения, входящие в состав горных пород и руд, которые в своем составе содержат какие либо металлы в низших степенях валентности, например Fe2+, Mn2+, V3+ и др. В процессе окисления эти металлы перехо дят в ионы высших валентностей, но меньших по размерам, вследствие чего силы связей в кристаллических структурах ослабляются. Это в кон це концов приводит к полному разрушению окисляющихся кристалли ческих веществ с образованием новых как растворимых, так и нераство римых в воде соединений.

Образующиеся первоначально при этих процессах соли (сульфаты, кар бонаты и др.) с той или иной скоростью вступают в реакцию с водой, подвер гаясь разложению или, как говорят, гидролизу, в результате чего ряд катио нов металлов выпадает в виде труднорастворимых в воде гидроокислов.

Известно, что поведение ионов в растворах находится в соответствии

сионными потенциалами Картледжа, величины которых выражаются

отношением заряда к ионному радиусу (W : Ri). Приведем список катио нов, образующих труднорастворимые гидроокислы, в виде диаграммы (рис. 142), в которой катионы расположены в порядке увеличения валент ности (вправо) и размеров радиусов ионов (вниз). Область катионов, склонных образовывать гидроокислы и окислы, на этой диаграмме очер чена с двух сторон пунктирными линиями.

Влево от этой области располагаются катионы сильных металлов

с8 электронной конфигурацией во внешней оболочке, т. е. щелочей и от части щелочных земель (с ионными потенциалами меньше 2,0). Эти ионы, как мы знаем из химии, легко удерживаются и переносятся в водных раст

Раздел IV. Окислы (оксиды)

293

Рис. 142. Катионы, склонные к образованию гидроокислов (ограничены пунктирными линиями)

ворах. В природных условиях они выпадают из раствора только в виде солей различных кислот. Исключение составляют лишь сильно поляри зующие катионы с 18 электронной оболочкой (Cu1+ и Pb2+), встреча ющиеся в природе в виде окислов.

Катионы с очень высокими ионными потенциалами (больше 10), об ладающие малыми радиусами ионов и большими зарядами, располага ются в верхней части диаграммы (см. рис. 142). Как известно, все они об разуют прочные комплексные анионы с ковалентными связями: [ВО3]3–, [СО3]2–, [SO4]2–, [РО4]3– и др., которые с соответствующими катионами дают разнообразные соли, выпадающие из растворов.

Таким образом, на этой диаграмме отчетливо видны различия в хими ческих свойствах катионов в связи с их ионными потенциалами, обус ловливающими различное поведение их в растворах в зависимости от степени кислотности или щелочности последних.

Часть интересующих нас катионов, образующих в природе окислы и гидроокислы, — Mg2+, Fe2+, Ni2+, Zn2+, Сu2+ и др. (в левой части очерченно

294

Описательная часть

го поля) — в кислых растворах способна к легкому переносу, но в сильно щелочных средах выпадает в виде кристаллических осадков — гидроокис лов или основных и средних солей. Катионы с более высокими ионными потенциалами — Аl3+, Fe3+, Mn4+, Si4+, Ti4+, Sn4+ и др. — уже легко осажда ются в слабощелочных или слабокислых растворах в результате гидро лиза солей, главным образом в виде труднорастворимых гидроокислов (в соединении c анионами ОН).

Главная масса гидроокислов образуется в зонах окисления рудных месторождений и вообще в коре выветривания горных пород. Вследствие того что большинство из них обладает очень низкой растворимостью в воде, при интенсивных процессах окисления они способны давать силь но пересыщенные растворы. Естественно поэтому, что они обычно наблю даются в виде скрытокристаллических и колломорфных масс.

Другой областью распространения гидроокислов металлов (главным образом железа, марганца, кремния) являются водные бассейны: болот ные, озерные и морские. Так, во многих современных пресноводных озе рах северных областей (Карелия, Финляндия, Швеция, Канада) в при брежных мелководных участках наблюдаются скопления гидроокислов железа и марганца в виде рассеянных конкреций различных размеров и форм: шаровидных, эллипсоидальных, лепешковидных и неправильной формы масс. Наряду с гидроокислами Fe и Mn всегда содержат гумусо вые вещества, иногда Ni, Co и др.

Каким бы путем ни образовались гидроокислы, с течением времени, особенно в воздушно сухой обстановке, они теряют капиллярную и ад сорбированную воду с образованием соединений, химически связанных с гидроксильными группами, и даже безводных окислов (Fe2O3, MnO2 и др.), особенно в областях с резко континентальным климатом. При про цессах регионального метаморфизма, протекающих на умеренных глуби нах, за счет гидроокислов происходит образование кристаллически зер нистых масс безводных окислов.

Если мы обратимся к вопросу о том, какие вообще элементы в виде безводных простых окислов образуются при эндогенных процессах ми нералообразования (магматических, пневматолитовых и гидротермаль ных), то увидим, что список их в точности отвечает списку тех же катио нов, которые склонны при процессах гидролиза солей образовывать нерастворимые в водах гидроокислы (см. рис. 142). Таковы, например, кварц, рутил (TiO2), касситерит (SnO2), корунд (Аl2О3), гематит (Fe2O3), браунит (Мn3О4) и многие другие. Двухвалентные катионы, примыка ющие к этой главной группе катионов (см. рис. 142), гораздо реже встре чаются в виде простых безводных окислов, но характерно, что они до вольно часто наблюдаются в виде двойных окислов (минералы группы шпинели, так называемые титанаты, близкие к ним тантало ниобаты и др.). Если мы упомянем о воде (Н2О) в твердом состоянии (лед), то этим

Раздел IV. Окислы (оксиды)

295

полностью исчерпаем весь список элементов, относящихся к рассматри ваемому нами классу минералов.

Особенности кристаллического строения. Почти все относящиеся к данному разделу соединения обладают кристаллическими структура ми, для которых характерна ионная или сильно полярная ковалентная связь структурных единиц.

В строении кристаллических структур из анионов принимают учас тие: О2– (в окислах) и [ОН]1– (в гидроокислах). Размеры ионных радиу

°

сов того и другого примерно одинаковы (около 1,36 A). Следовательно, все разнообразие структур кристаллов находится главным образом в за висимости от размеров катионов, их валентностей и химических связей между ионами.

В кристаллических структурах этих соединений катионы всегда на ходятся в окружении анионов кислорода (или гидроксила), и координа ционные числа кристаллических структур являются важной характерис тикой этих минералов.

Сопоставляя между собой изученные структуры простых окислов, мы можем проследить различные варианты координационных чисел, начиная от довольно высококоординационных ионных структур и кончая молеку лярными (правда, редкими) структурами, обладающими низкими числа ми и вандерваальсовской связью структурных единиц. Окислы двухвалент ных металлов, характеризующиеся типичными ионными структурами, кристаллизуются в структурном типе NaCl, т. е. с координационными числами 6 и 6. Лишь окислы сильно поляризующих ионов с 18 электрон ной наружной оболочкой имеют структуры с более низкой координацией, например ZnO (4 и 4), а также Сu2О (4 и 2). Кристаллические структуры окислов трех и четырехвалентных металлов, катионы которых имеют мень шие размеры, обладают более низкими координационными числами, па дающими в соответствии с приближением ионной связи к ковалентной: Аl2О3 (6 и 4), UO2 (8 и 4), TiO2 (6 и 3), SiO2 (4 и 2). В соединениях с молеку лярными структурами эти числа еще ниже, например: для Sb2O3 (сенар монтит) 3 и 2, для СО2 (твердой углекислоты) — 2 и 1.

Что касается сложных окислов, в составе которых участвуют различ ные по размерам катионы металлов, то координационные числа для каж дого из них могут быть либо одинаковыми, либо различными. Например, для соединения FeTiO3 (ильменит) оба катиона — Fe2+ и Ti4+ — находятся в шестерном окружении анионов кислорода, тогда как для соединений типа перовскита (CaTiO3) и луешита (NaNbO3) устанавливается другая картина: катионы Ti4+, Nb5+ и другие находятся в том же шестерном окру жении, а катионы Са2+ и Na1+, обладающие большими ионными радиуса ми, имеют координационное число 12. В соединениях типа шпинели (MgAl2O4) по рентгенометрическим данным устанавливаются следующие координационные числа: для Mg2+— 4, а для Аl3+— 6.

296

Описательная часть

 

Таблица 8

Главнейшие катионы и их координационные числа в природных окислах

 

 

 

Коорди-

 

 

национ-

Катионы

 

ные числа

 

 

 

 

 

4

Be2+, Mg2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+, Si4+

 

6

Mg2+, Fe2+, Mn2+, Al3+, Fe3+, Cr3+, Ti4+, Zr4+, Sn4+, Ta5+, Nb5+

 

8

Zr4+, Th4+, U4+

 

12

Ca2+, Na1+, Y3+, Ce3+, La3+

 

Список катионов и их координационные числа в изученных кристал лических структурах простых и сложных окислов приводятся в табл. 8.

Гидроокислы, содержащие гидроксильные группы [ОН]1– , напри мер Mg[OH]2, а также окислы, содержащие в качестве катиона водо род Н1+, например НАlО2, по своему строению весьма существенно отличаются от типичных окислов. Укажем, что замена ионов О2– ди польными анионами [ОН]1– приводит к образованию типичных слои стых структур с ионной связью в слоях и вандерваальсовской связью между слоями. При этом снижается симметрия структуры. Например, MgO кристаллизуется в кубической структуре типа NaCl, тогда как Mg[OH]2 — в гексагональной слоистой структуре. Точно так же Аl2О3 кристаллизуется в тригональной сингонии, а полиморфы Al[OH]3 — в моноклинной и триклинной. Сильно поляризующие катионы типа купро не образуют самостоятельных гидратов, а лишь входят в каче стве компонентов в состав сложных солей, о которых речь будет идти в следующем разделе.

Все эти особенности кристаллических структур окислов сказывают ся и на физических свойствах минералов. Соединения, характеризующи еся ионной связью, обладают прочным кристаллическим строением в целом несравненно более прочным, чем это наблюдается для галогени дов и сульфидов. В этом проявляется сильное химическое сродство с кис лородом металлов, образующих подобные окислы. Прочность кристал лических построек выражается в высокой твердости этих окислов (6, 7, 8 и 9 по шкале Мооса), высокой химической стойкости, тугоплавкости, очень низкой растворимости и т. д.

Слоистые кристаллические структуры гидроксидов значительно ме нее прочны ввиду слабых связей между слоями. Замечательна их способ ность легко расщепляться по базальной спайности на тонкие листочки. Твердость гидроксидов двухвалентных металлов низкая; при замене их катионами трехвалентных металлов она увеличивается и особенно воз растает при наличии в структурах ионных групп [ОНО]2– (диаспор).

Раздел IV. Окислы (оксиды)

297

Окраска минералов также характеризуется своими особенностями. Соединения, в которых участвуют ионы типа благородных газов (Mg2+, Al3+

идр.), как правило, бесцветны или имеют аллохроматическую окраску. Однако подавляющее число минералов, в которых роль катионов играют ионы несимметричного строения (Fe, Mn, Cr и др.), интенсивно окрашено в темные цвета. Особенно широко распространены черные окраски. Мно гие из этих минералов непрозрачны или просвечивают в тонких осколках

ишлифах, причем по преимуществу обнаруживают бурые или красные оттенки. В соответствии с этим находятся и полуметаллические блески этих минералов. Явно повышены также и магнитные свойства минералов.

Классификация минералов. Все относящиеся к настоящему разделу минералы принято делить: 1) на безводные окислы; 2) гидроокислы или окислы, содержащие гидроксил и водородные ионы. Мы сохраним это деление, поскольку с кристаллохимической точки зрения оно является вполне оправданным.

Втом и другом классе помимо простых соединений присутствуют двойные или более сложные соединения, выделявшиеся ранее в самостоя тельные классы. К числу их принадлежат прежде всего двойные окислы

типа RO . R2O3. Затем, к ним относятся так называемые титанаты, ниоба ты и танталаты, т. е. «соли» гипотетических кислот: титановой, ниобие вой и танталовой. Как увидим ниже, рентгенометрические исследования всех этих соединений показали, что кристаллические структуры многих из них не имеют ничего общего с типичными солями кислородных кис лот. Наоборот, устанавливаются определенные их черты, тесно сближа ющие их с окислами.

Итак, в данном разделе мы будем рассматривать два класса соединений.

·Класс 1. Простые и сложные окислы.

·Класс 2. Гидроокислы, или окислы, содержащие гидроксил.

КЛАСС 1. ПРОСТЫЕ И СЛОЖНЫЕ ОКИСЛЫ

К этому классу относятся как простые, так и сложные окислы, не со держащие в своем составе гидроксильных ионов. Сложные окислы нет смысла выделять особо, тем более что по кристаллическому строению они либо аналогичны простым окислам, либо немногим отличаются от них.

Относящиеся сюда минералы в большинстве обладают сравнительно простыми кристаллическими структурами. Более сложны лишь кристал лические структуры минералов особо стоящей группы кварца SiO2.

Отношения между катионами и анионами кислорода в этих минера лах колеблются в пределах от 2 : 1 (А2Х) до 1 : 2 (АХ2). В сложных окис лах, кроме того, устанавливаются различные соотношения между катио нами — обычно 1 : 1 и 1 : 2. Лишь для некоторых редких соединений мы наблюдаем более сложную картину соотношений.

298

Описательная часть

1. Группа льда

Как известно, вода в природе находится в трех состояниях: твердом (лед, снег), жидком (дождь, минеральные источники, реки, озера, моря и океаны) и газообразном (водяной пар в атмосфере и вулканических экс галяциях). По своим свойствам вода стоит особняком среди окислов металлов и металлоидов. Вода играет огромную роль в химических про цессах, совершающихся в земной коре: химические реакции происходят главным образом в водных растворах. Без воды, так же как и без кислоро да, немыслимо существование и органической жизни на Земле.

Это соединение мы рассмотрим лишь в твердом состоянии.

ЛЕД — Н2О. Химический состав. Н — 11,2 %, О — 88,8 %. Иногда со держит газообразные и твердые механические примеси.

Сингония гексагональная; дигексагонально пирамидальный в. с. L66P. Пр. гр. P63mc(С 46v). а0 = 7,82; с0 = 7,36. Кристаллическая структура. Лед обладает молекулярной кристаллической структурой, в локальном отно шении близкой к структуре алмаза (каждая молекула Н2О имеет коорди национное число 4).

Строение самой молекулы Н2О характеризуется симметрией, близ кой к симметрии тетраэдра, что обеспечивается механизмом химической связи в молекуле. Все шесть внешних электронов кислорода гибридизи рованы (приведены в одинаковое возбужденное состояние), образуя че тыре у облака, в двух из которых находится лишь по одному электрону. Одноэлектронные σ облака принимают в себя s электроны двух атомов водорода, образуя с ними полярную ковалентную связь (рис. 143а).

Каждое из двух других σ облаков атома кислорода образовано парой неподеленных электронов (L парой), занимающей значительный объем. Все электронные σ облака испытывают взаимное отталкивание и пыта ются принять положение с максимальной угловой удаленностью друг от друга. Если бы все они были совершенно одинаковыми, мы получили бы симметричную тетраэдрическую конфигурацию, однако на конце двух из четырех σ облаков расположены протоны H+, которые, частично компен сируя отрицательный заряд электронов, уменьшают взаимное отталки вание этих облаков, в результате чего угол между двумя связями O—H в свободной молекуле отклоняется от идеального для тетраэдра значе ния 109,5° и принимает значение 104,5°.

На концах двух таких σ облаков сосредоточен избыточный положи тельный заряд протонов, в то время как на двух неподеленных L парах — отрицательный. Молекулы с таким распределением заряда способны свя зываться друг с другом по донорно акцепторному механизму (протон — акцептор электрона, L пара — донор), приобретая взаимное расположе ние, обеспечивающее сближение протонов одних молекул с L парами других (рис. 143б). В силу этого в структуре льда слабосвязываемые между собой водородной донорно акцепторной связью молекулы Н2О ориен

Раздел IV. Окислы (оксиды)

299

Рис. 143. Возникновение тетраэдрической координации в структуре льда:

а — конфигурация валентных электронов в свободной молекуле воды (густота заливки приближенно пропорциональна электронной плотности, 0 — протон). Показана также вторая молекула, притягивающаяся к первой; б — принятие протоном второго электро на от L пары и образование донорно акцепторной связи c равномерным распределением двух центрированных протоном s электронов между облаками бывших связывающей пары и L пары атомов кислорода

тированы таким образом, что положительно заряженные участки одних молекул направлены к отрицательно заряженным участкам других моле кул. В структуре льда распределение электронов между протонами и дву мя сортами σ облаков делается неразличимым и молекулы приобретают тетраэдрическую симметрию.

По общему расположению молекул структура льда аналогична струк туре вюртцита (см. рис. 96), с той лишь разницей, что места Zn и S заняты молекулами Н2О. При таком строении (с низким координационным чис лом, равным 4) получается далеко не плотная упаковка структурных еди ниц (остаются большие просветы). Этим и объясняется то, что удельный вес льда ниже, чем воды.

Облик кристаллов. Для кристаллов льда в подавляющем большин стве случаев характерно скелетное развитие. Кристаллические образова ния снежинок, обладающих гексагональной симметрией, чрезвычайно разнообразны по формам шестилучевых фигур роста. Широко известны также дендриты и узорчатые образования льда. В ледяных пещерах кри сталлы льда встречаются в виде правильных шестиугольных пластинок, таблитчатых индивидов и сложных по форме сростков. Известны уни кальные по величине и хорошему огранению кристаллы льда (до 40 см в длину и до 15 см в поперечнике), встреченные на северо востоке Азии в горных выработках в условиях вечной мерзлоты. В одном случае они были

300

Описательная часть

обнаружены в полостях мощной зоны дробления на глубине 55–60 м от поверхности, где температура мерзлых боковых пород равна 3–4 °С. Как показали измерения прикладным гониометром, наиболее ча сто встречающимися гранями кристаллов оказались гексагональная ди пирамида и пинакоид (на самом деле — две гексагональных пирамиды

идва моноэдра).

Вдругом случае очень крупные кристаллы льда столбчатого облика были встречены в заброшенных горных выработках, пройденных в зоне окисления сульфидного месторождения. При вскрытии этих выработок было установлено, что они заполнены сплошной массой льда, среди ко торого встречались полости с минерализованной водой и газами, нахо дившимися под большим давлением. Наибольшие кристаллы льда до стигали длины до 60 см при 15 см в диаметре и имели вид гексагональных призм, притупленных гранями гексагональной пирамиды.

Агрегаты. В сплошных массах нередко наблюдаются кристаллически зернистые агрегаты (плотный снег, фирн в ледниковых районах). Глет черный лед состоит из очень крупных, неправильных по форме кристал лических зерен. Всем хорошо известны также натечные формы сосулек, образующихся из переохлажденной воды на теневой стороне крыш при таянии снега, а также в ледяных пещерах (сталактиты и сталагмиты). В граде, выпадающем из туч в грозовые периоды, нередко можно наблю дать концентрически слоистое строение. В морозное осеннее утро часто образуются выцветы на земле (иней).

Цвет. Лед бесцветен или слабо окрашен в голубоватый цвет (в боль ших массах). Блеск стеклянный. Оптически положительный. Показатель преломления очень низкий: Ng = 1,310, Nm = 1,309.

Твердость 1,5. Хрупок. Спайностью не обладает. Уд. вес 0,917 (мень ше, чем у воды). Уменьшение удельного веса при кристаллизации свой ственно также металлическому висмуту.

Происхождение. Лед образуется на поверхности водных бассейнов при охлаждении воды. Возникающая вначале ледяная каша смерзается в плавающую корочку, на которой снизу нарастают кристаллические ин дивиды, вытягивающиеся в вертикальном направлении вдоль шестерных осей симметрии. Снег образуется в холодных областях атмосферы за счет водяного пара. При тех же условиях появляются иней и ледяные узоры на охлажденных предметах. В ледяных пещерах с низкой температурой в лед превращаются просачивающиеся по трещинам поверхностные воды.

Врайонах вечной мерзлоты с суровым климатом, малоснежной про должительной зимой в зимнее время образуются так называемые «нале ди», т. е. ледяные покровы, иногда на огромных по размерам площадях. Речные наледи возникают при полном промерзании реки в мелких мес тах, в результате чего текучие воды вынуждены искать выхода на поверх ность, пропитывая снежные покровы. Другие наледи образуются за счет

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]