Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

звезды

.docx
Скачиваний:
4
Добавлен:
20.05.2015
Размер:
38.93 Кб
Скачать

Звезда́ — излучающий свет массивный газовый шар, удерживаемый силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза[1].

Ближайшей к Земле звездой является Солнце — типичный представитель спектрального класса G. Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационногосжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакцийпревращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. лет =39 Пм = 39 триллионов км = 3,9·1013 км) от центра Солнечной системы (см. также Список ближайших звёзд).

Невооружённым взглядом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся[источник не указан 26 дней] в местной группе галактик.

Звезды — это основные тела Вселенной, в них сосредоточено более 90 % наблюдаемого вещества. Солнце — одна из звезд, но для нас Солнце определяет всю жизнь; другие звезды представляются светящимися точками на небосводе, так как очень далеки от нас. Отдельные группы звезд — созвездия — выделяли еще в древности, в их названиях отражены образ мыслей, предания, легенды и жизнь разных народов. Сейчас на звездном небе выделено 88 созвездий с четко обозначенными границами, 60 из них видны с территории нашей страны. В каждом созвездии звезды обозначаются по мере уменьшения яркости буквами греческого алфавита. Некоторые яркие звезды имеют свои собственные названия, которые чаще всего достались им от греческих (Сириус), латинских (Регул) или арабских (Альтаир) астрономов. В течение суток звезды делают полный круг по небу и центр этого круга (полюс мира) находится в том же направлении, в котором днем отбрасывается самая короткая тень (время истинного полудня). Постепенно люди научились ориентироваться (от лат.«ориенс» — восток) и по звездам. В ритме со сменой времен года изменяется вид звездного неба и наибольшая высота Солнца в полдень. Созвездия, видимые над горизонтом вечером на западе, примерно через 2,5 месяца уже появляются утром на востоке. Значит, Солнце движется справа налево среди звезд, его путь называют эклиптикой. Созвездия служат фоном, на котором изучаются и описываются положения перемещающихся по небу тел. Созвездия, по которым проходит годовой путь Солнца, относят к поясу Зодиака. В древности в него входили 12 созвездий, отсюда деление года на 12 месяцев, так как Солнце проходит участок каждого из них за месяц, т. е. по 30 градусов дуги. Сейчас путь Солнца проходит через 13 созвездий (стало «заходить» в созвездие Змееносца). Звездные величины, введенные в древности, обозначают буквой т. Все видимые звезды еще во 2 в. до н.э. астроном Гиппарх разделил по яркости: переход от одной звездной величины к другой глаз ощущает одинаковым перепадом блеска. У самых ярких звезд т = 1, у самых слабых — 6. В безлунную ночь невооруженным глазом можно видеть почти 3000 звезд (до 6-й звездной величины), в телескоп — почти 350 тыс. звезд (до 10-й величины), 32 млн — до 15-й и 1 млрд — до 20-й. Так как воспринимаются лишь относительные изменения яркости, эти значения связаны со свойствами глаза. Диапазон в 5 звездных величин соответствует отношениям их блеска в 100 раз. Поэтому отношение блеска одной звезды к блеску другой, отличающееся на одну величину, соответствует (100)1/5 = 2,512. Эта величина , где Е — освещенность (световой поток, падающий на единичную площадку поверхности), — звездная величина, соответствующая 1 лк. И отношение освещенностей звезд равно 2,5 в степени разности их звездных величин, т. е.  Для Солнца , для полной Луны,  поэтому из приведенной формулы можно заключить, что при одинаковой

высоте над горизонтом полная Луна освещает земную поверхность в 465 000 раз слабее Солнца. Сириус ярче Полярной звезды, имеющей звездную величину +2, в 25 раз, что соответствует разности звездных величин 3,5. Поэтому звездная величина Сириуса (+2 - 3,5) = -1,5, а Солнце посылает энергии в 1010 раз больше, чем Сириус. Здесь учтено, что освещенности, созданные одним источником на разных расстояниях, обратно пропорциональны квадратам этих расстояний. Звезды — газовые шары, они светят собственным светом (в отличие от планет). По физическим характеристикам звезды делят на нормальные звезды, белые карлики и нейтронные звезды. Размеры большинства звезд различны, диаметры — от 10 до 107 км, Солнца — 1,4 млн км. Белые карлики и нейтронные звезды имеют диаметр всего 10 — 20 км, есть гиганты — Бетельгейзе, Арктур, а самые большие, красные гиганты, больше Солнца настолько, что, оказавшись на его месте, заняли бы объем, включающий орбиту Юпитера. Плотность вещества гигантов и сверхгигантов меньше плотности воздуха в атмосфере Земли, солнечного — больше плотности воды в 1,5 раза, у белого карлика (звезды Сириус В) — порядка 2 т/см3, а у нейтронных звезд — 1014 кг/м3, порядка плотности атомного ядра. Светимость звезды — это мощность оптического излучения. Чаще всего светимости звезд выражают в светимостях Солнца, которое излучает 3,8  1026 Вт. Диапазон светимостей наблюдаемых звезд огромен — от 10-3 до 106 светимостей Солнца. Для нас Солнце много ярче других звезд, но это не означает, что оно излучает больше энергии, чем они. Для исключения влияния расстояния ввели понятие абсолютной звездной величины, которую имела бы звезда, находящаяся от нас на расстоянии 10 пк. Абсолютная звездная величина М связана с видимой величиной т соотношением, которое является одним из основных в звездной астрономии: Величина т- Мназывается модулем расстояния. Для Солнца абсолютная звездная величинаМс равна +4m,72, т.е. существенно меньше, чем видимая, как для всех звезд, которые находятся на расстоянии ближе 10 пк. Расстояния до звезд, как уже указывалось, измеряют методом параллакса (см. рис. 2.2). Здесь единицами длин служат парсек и световой год. 1 пк соответствует годичному параллаксу в 1", т.е. с этого расстояния 1 а. е. видна под углом 1". Отсюда следует, что в 1 пк столько астрономических единиц, сколько угловых секунд в радиане, т. е. 1 пк = 206 265 а. е. Естественно, что наибольший годичный параллакс = (0",76) имеет ближайшая к нам звезда - Проксима Центавра. Поскольку расстояние ,  , т.е. самая близкая к нам звезда находится на расстоянии, в 272 000 раз большем, чем Солнце. Световой год есть расстояние, которое проходит свет в течение года, т.е.  Но 1 пк = 206265 а. е., и потому 1 пк = 3,26 св. г. В XIX в. звезды рассортировали по размерам и массам, а затем — по спектрам. 327

Спектральные классы ввел в 1900 г. американский астроном Э.Пикеринг, обозначив их буквами латинского алфавита. Границы между классами были нечеткие, и впоследствии каждый класс разбили на группы от 0 до 9, и наше Солнце попало по спектру в группу G1. Когда при истолковании спектров начали учитывать ионизацию, стало возможным по спектральным сериям определять температуру звезд. Состав звезд не отличается разнообразием: как и Солнце, большинство звезд состоит преимущественно из водорода и гелия. Тогда спектральные классы выстроили в порядке убывания температуры: О, В,A, F, G, К, М. Имеются еще четыре дополнительных класса: для холодных звезд — R, N, S, для горячих — W. Очевидно, что без классификации звезд нельзя говорить об их эволюции. Химический состав звезд определяют по спектрам. Данные относятся к поверхностным слоям звезд, поскольку они непрозрачны. Оказалось, что 98 % звездного вещества — это водород и гелий, причем обычно водорода по массе в 2,7 раза больше (рис. 9.3). Строение звезды и источник ее энергии казались в какой-то степени выясненными, но возникли другие, не менее важные вопросы. Солнце, возраст которого оценивают в 5 млрд лет, бедно водородом и богато гелием, хотя за это время оно должно было истратить меньше водорода и образовать меньше гелия. Может быть, раньше оно было горячее и процессы шли скорее, но, по геологическим данным, количество солнечной энергии практически не менялось. Если бы водород уже в большей части выгорел, то в самом центре этой звезды могли начаться ядерные реакции и стали образовываться более тяжелые элементы. На Солнце и других звездах много элементов, более сложных, чем гелий. Получается — и они из самого центра Солнца?! Это противоречит гипотезе происхождения их из туманности, стало быть, тяжелые элементы должны появиться как-то иначе. Диаграмму зависимости светимостей звезд от их спектральных классов (температур) составили голландец Эйнар Герцш-прунг и американец Генри Норрис Ресселл, она названа именами обоих (рис. 9.4). По оси абсцисс расположены спектральные классы звезд (показатели цвета или температуры), по оси ординат — светимости звезд L(или звездные величины М). Звезды по светимости разделены на семь классов, обозначенных римскими цифрами. Класс светимости пишется после спектрального клас- 328

са звезды: так, Солнце — звезда класса G2V. На диаграмме звезды располагаются не беспорядочно, а образуют несколько последовательностей. Главная последовательность — узкая полоса звезд, протянувшаяся из верхнего левого угла вниз. Так, в окрестности Солнца большинство звезд сконцентрированы вдоль нее. В правом верхнем углу — сверхгиганты. Размеры звезд сумели оценить с помощью изобретенного в 1881 г. интерферометра, который улавливал разницу в длинах световых волн, исходящих от разных точек поверхности звезды. Оказалось, что вблизи Солнца на одного сверхгиганта приходится около 1000 гигантов и около 10 млн звезд Главной последовательности. Группа звезд-гигантов компактна и расположена вверху диаграммы между Главной последовательностью и группой сверхгигантов. Параллельно Главной последовательности, несколько ниже ее, расположены звезды, образующиепоследовательность субкарликов (у них содержание металлов гораздо ниже, чем у звезд Главной последовательности), в левом нижнем углу диаграммы — группа белых карликов, светимость которых меньше солнечной в сотни раз. 329

Масса звезды приобрела большую значимость, когда были открыты источники энергии звезд. Масса Солнца Мс = 2 1030 кг, а массы почти всех звезд лежат в пределах 0,1 — 50 массы Солнца. Практически наиболее верным способом определения массы звезды являются исследования движений двойных звезд. Оказалось, что положение звезды на Главной последовательности определяется ее массой (рис. 9.5). Соотношения светимостей звезд и их радиусов , све-тимостей и масс сравнили со значением количества энергии, излучаемой поверхностью звезды за единицу времени ,и получили соотношение между температурой поверхности и ее массой  . Итак, чем меньше масса звезды, тем меньше ее поверхностная температура и более поздним будет ее спектральный класс. Отсюда можно оценить массу звезды и по ее светимости:   . Звезды отличаются цветом; считается, что имеют место законы равновесного излучения — закон Стефана—Больцмана и закон Вина. Антарес имеет красный цвет, Капелла — желтый, Сириус — белый, Вега — голубовато-белый. Модели внутреннего строения звезд основаны на соотношениях между их параметрами. Они получены Эддингто-ном из условий равновесия плазмы внутри звезд. Оказалось, что с увеличением массы скорость потребления топлива растет быстрее, чем его запас, т. е. чем больше и горячее звезда, тем быстрее кончится ее топливо и ее «жизнь» на Главной последовательности, где находится 0,99 всех видимых звезд. Так, Солнце, по оцен- 330

кам ученых, пробудет на ней еще 8 млрд лет, т.е. оно еще не достигло своего среднего возраста. Если бы Солнце принадлежало к классу А, то его срок (5 млрд лет) был бы на исходе. Для такой большой и горячей звезды, какSЗолотой Рыбы, этот срок был бы всего 2 — 3 млн лет. В теории Эддингтона все свойства звезды основывались на модели идеального газа, поэтому звезды у него при сжатии обязательно нагревались. На основе закономерностей распределения звезд на диаграмме и известных физических моделей Ресселл построил эволюционный путь звезды (рис. 9.6). Переходя от стадии холодной туманности в голубовато-белую, звезда перемещается в верхней части диаграммы справа налево, пока не достигнет верхнего левого конца Главной последовательности. Далее звезда под влиянием поля тяготения сжимается (при этом нагревания не происходит, а ее вещество достигает плотности, уже не соответствующей плотности газа) и остывает, превращаясь в желтый карлик, как Солнце. Затем она станеткрасным карликом и погаснет совсем, став черным 331

карликом — пеплом угасшей звезды. Так звезда скользит по Главной последовательности из верхнего левого угла к нижнему правому. Эту гипотезу, просуществовавшую всего 10 лет, назвали теорией скользящей эволюции звезд. Схема эволюции звезд сопоставлялась с наблюдениями. Существование межзвездной пыли доказал Р.Трюмплер (1930), исследуя звездные скопления. Схема эволюции такова. Облако газа и пыли (газопылевой комплекс) сжимается и нагревается, возникающие неоднородности приводят его в состояние гравитационной неустойчивости, и оно распадается на части. Пока фрагмент прозрачен для инфракрасного излучения, температура его внутренних слоев не повышается, сжатие идет ускоренно. С некоторого момента сжатие переходит в адиабатическое, объект становится непрозрачным, давление и температура внутри растут, замедляя сжатие. Так возникает протозвезда. Внутренние слои разогреваются за счет энергии гравитации падающего к центру вещества, объект как бы закипает, что отражается бурными вспышками на поверхности. Пример такой звезды — T Тельца. Это продолжается до тех пор, пока не будут достигнуты температуры, достаточные для начала термоядерных реакций. В соответствии со своей массой звезда занимает место на Главной последовательности. Солнце проделало такой путь почти за 2 млн лет. Звезда такой массы «сядет» в среднюю часть последовательности и останется там на срок до 106 лет. Так протозвезда станет звездой.

По мере выгорания водорода давление в оболочке повышается, внешние слои расширяются и звезда начинает покидать Главную последовательность (двинется сначала чуть вправо и вниз), так как на расширение тратится некоторая энергия, и светимость звезды уменьшается (см. рис. 9.6). Равновесие достигается за счет формирования протяженной зоны конвекции, и звезда перейдет в группу красных гигантов. Огромная атмосфера красного гиганта не обеспечивает перенос энергии от внутренних слоев, и внутри звезды процессы пойдут адиабатически. Вблизи ядра температура может достичь необходимого значения для протекания термоядерных реакций, возможно, и с большим выходом энергии, чем у протон-протонных. Тогда холодная огром- 332

ная атмосфера будет отброшена растущим давлением и превратится в расширяющуюся газовую туманность, которая может рассеяться в пространстве за сотни тысяч лет. Вероятно, наблюдаемая туманность в созвездии Лиры имеет такое же происхождение. Соединения ядер гелия возможны, но они дают меньше энергии (до 9 %), чем соединения ядер водорода. Звезда может продлить свое существование, если из углерода, получающегося при соединении трех атомов гелия, начнут возникать более сложные ядра. Конец наступает при синтезировании железа, которое имеет самые устойчивые ядра и уже не выделяет энергии

Эволюционный путь звезды определяется ее массой, так как масса определяет количество горючего и с ее ростом увеличиваются температура в центре звезды и интенсивность термоядерных реакций. У звезд относительно небольшой массы (до 30 ) светимость Lпропорциональна , где =3 — 5. Время жизни  звезды пропорционально , т.е. , и для = 4, например, получаем пропорциональное М-3. Значит, если для Солнца  порядка лет, то у звезды массой лет. Для очень массивных звезд светимость не столь высока, и она пропорциональна массе, т. е. время жизни почти не зависит от массы и равно 3 — 5 млн лет. Если звезда имеет массу, близкую массе Солнца, то возможен переход звезды в кратковременную — на несколько миллионов лет — стадию пульсаций (стадия цефеиды), после чего звезда станет белым карликом. Возможно, что Солнце через миллиарды лет тоже начнет расширяться, достигнет стадии красного гиганта, и, если к тому времени человечество не покинет Солнечную систему (или не уничтожит себя раньше этого срока), его судьба будет предрешена. Красные гиганты типа Бетельгейзе и Антареса развились из звезд Главной последовательности и были массивнее Солнца. Возможно, большие звезды станут инфракрасными гигантами. Оценим размер Солнца в стадии красного гиганта. По закону Стефана—Больцмана светимость Lпропорциональна квадрату радиуса и . Значит, радиусRпропорционален . Подставляя численные значения, получаем радиус Солнца в эпоху красного гиганта: а. е. Полученное значение показывает, что Солнце расширится до орбиты Меркурия (среднее расстояние 0,387 а.е., расстояние в перигелии — 0,31 а. е.) и поглотит только планету Меркурий. 333

Переменные звезды— это звезды, блеск которых меняется (беспорядочно или периодически). Они отличаются от звезд типа нашего Солнца, «жизнь» которых относительно стационарна. Затменно-переменными являются двойные звезды. Отмеченное более тысячи лет назад арабскими астрономами изменение блеска звезды р Персея отражено в ее названии — Эль-Гуль, или «дьявол», что в Европе превратилось в Алголь. Причину колебаний ее блеска разгадал английский астроном-любитель Дж. Гудрайк, предположив «существование большого тела, вращающегося вокруг Алголя». Он же обнаружил (1784) пульсации звезды дельта Цефея с периодом меньше 0,2 суток. Еще раньше Д. Фабрициус заметил новую яркую звезду в созвездии Кита, блеск которой менялся с периодом в 348 дней, и назвал ее Мирой («Чудесная»). Такие долгопериодические переменные звезды — преимущественно звезды-гиганты «холодного» спектрального класса М. Впоследствии были обнаружены и классифицированы более 14 тыс. переменных звезд. Физически переменные звезды на диаграмме «спектр — светимость» занимают широкую полосу в направлении от Главной последовательности в область гигантов и сверхгигантов. При переходе слева направо период пульсаций звезды обратно пропорционален корню квадратному из средней плотности звезды. А ведь чем дальше вправо к области сверхгигантов смещена звезда, тем больше ее радиус и меньше ее плотность! Итак, период пульсаций связан со всей структурой звезды. Вероятно, источником пульсаций в этих звездах служит энергия, высвобождающаяся в звездных недрах, которая способна преобразоваться в механическую за счет особенностей ее строения. Цефеиды — важный тип физически переменных звезд (см. гл. 3), с периодом блеска от нескольких часов до суток. Изучение спектров цефеид показывает, что вблизи максимального блеска звезда приближается к нам с наибольшей скоростью, а вблизи минимума — удаляется (эффект Доплера). Значит, цефеиды периодически сжимаются и расширяются (см. рис. 3.7). Радиус цефеиды почти в 30 раз больше солнечного, и зона двукратной ионизации гелия, составляющая всего 1—2 % радиуса, при средней температуре 40 000 К и плотности 3 10-8 г/см3 составляет 10-6 всей массы. Но именно эта, казалось бы, незначительная зона приводит к пульсациям, работая как поршневой двигатель: освобождение энергии при сжигании горючего (или приобретение энергии системой) происходит в момент максимального сжатия в цилиндре. В зоне ионизации гелия-И за счет поглощения энергии растет давление, газ расширяется и уменьшается плотность. Слой становится прозрачней, запасенная в нем энергия начинает усиленно высвечиваться. При достижении наибольшего расширения внешние слои под действием тяготения начнут падать вниз, но равновесное положение «проскользнут», произойдет сжатие, и цикл повторится. Более детальный анализ показал, что пульсировать способ- 334

ны только звезды, в которых зона ионизации попадает в резонанс со всей звездой. Это возможно только для гигантов и сверхгигантов, а при движении вправо от них отстройка от резонанса приводит к неправильностям в блеске звезды. Возможно, многие звезды проходят подобные стадии эволюции. Новые звезды в нашей Галактике дают до сотни вспышек за год, но видеть удается только одну-две из них. Термин «новые» ввел Тихо Браге, наблюдавший вспышку в 1572 г., и, хотя это название не из удачных, так как вспышка свидетельствует не о рождении, а о гибели звезды, оно сохранилось. Недавно установили, что новые — это тесные двойные системы, состоящие из звезды позднего класса и горячей звезды, окруженной оболочкой плотного газа. Вспыхивает звезда с меньшей массой, перетягивание части массы к ней разогревает ее и приводит к взрыву. Зарегистрировано около 170 новых звезд в нашей Галактике и около 200 — в галактике Андромеды. В максимуме Новая звезда достигает абсолютной звездной величины М = -8. Такая яркость длится всего несколько дней. Может случиться, что она за несколько месяцев вернет свои прежние характеристики, и в звездных просторах это не выглядит катастрофой, но через сто или тысячу лет она может вновь взорваться (как вулкан имеет склонность к повторным извержениям). В 1885 г. взорвалась Новая SАндромеды: будучи слабой звездочкой 7-й величины, она вдруг стала светить ярче звезды 6-й величины. С учетом расстояния до нее она стала ярче всей галактики Андромеды, ее блеск достигал блеска миллиона простых новых звезд, или в 10 млрд раз превышал блеск Солнца. Это была вспышка Сверхновой звезды. Сверхновыми звездами стали называть уже по аналогии звезды, производящие наиболее мощные взрывы. Вспышку Сверхновой наблюдали китайские астрономы еще в 1054 г. в созвездии Тельца, и сейчас остатки оболочки этой звезды наблюдаются в виде Крабовидной туманности. Со временем она рассеется в пространстве, но при вспышках образуются изотопы многих элементов с массовыми числами, большими 60. Именно эти вспышки обогащают газопылевые комплексы тяжелыми элементами, поэтому в молодых звездах наблюдается более высокое содержание тяжелых элементов, чем в старых. Вспышки Сверхновых наблюдали примерно раз в 150 — 300 лет в каждой галактике. Кроме расширяющейся оболочки газа, которая сбрасывается при вспышке, на месте вспышки остается нейтронная звезда, или пульсар. Грандиозная Сверхновая была зарегистрирована при обычном фотографировании звездного неба Р. Макнаутом (Австралия) 23 февраля 1987 г., а через 20 ч — И.Шелтоном (Чили), причем она произошла на расстоянии всего 16 тыс. св. лет в Большом Магеллановом облаке. Вспышка была потом детально исследована во 335

всех диапазонах длин волн, и от нее исходил мощный поток нейтрино. Эти исследования приоткрыли картину эволюции звезд, выделили проявление и роль в ней смены ядерного горючего, показали, что эта Сверхновая относилась к старым звездам. Ранее это была звезда (красный гигант) с массой в 18 раз больше солнечной, она светила в 40 тыс. раз ярче Солнца и за 10 млн лет выработала энергию превращения водорода в гелий. Когда во внутренней области, где сосредоточено 30 % массы звезды, закончились термоядерные реакции, центральные слои стали сжиматься. Сжатие продолжалось десятки тысяч лет (от 6 до 1100 г/см3), при этом температура поднялась от 40 до 190 млн К. Эти изменения привели к «загоранию» следующего ядерного горючего — гелия, которого хватило еще на 1 млн лет. Внешние слои, содержащие водород, расширили звезду до 300 млн км, и она превратилась в красный гигант. После выгорания гелия настала очередь ядерного горения углерода на 12 тыс. лет при температуре ядра 740 млн К и плотности 240 г/см3' В результате сгорания углерода образовались магний, неон и натрий. Неон выгорел после углерода за 12 лет при температуре 1,5 млрд К и плотности 7,4 млн г/см3. После неона начинает гореть кислород, который сгорает за 4 года (Г= 2,1 млрд К и плотность в ядре 16 млн г/см3). После выгорания кислорода наступает очередь образовавшихся кремния и серы. Горение кремния формирует температуру в 3,4 млрд К и плотность 50 млн г/см3. Процесс выгорания кремния происходит уже за 7 суток. Ядро не уменьшило своей энергии из-за высокой температуры, но стало железным. Оно не обладает запасом ядерной энергии и не может противостоять тяготению, поэтому начинает стремительно сжиматься. За доли секунды ядро массой в 1,5 солнечных и радиусом в половину земного сжимается до радиуса около 100 км, т. е. становится почти нейтронным. Если бы оно сжалось до 10 км, то получилась бы нейтронная звезда. Но шло развитие рождения Сверхновой. Когда плотность достигла 270 млрд г/см3, нейтроны стали давить друг на друга, и процесс прекратился. Внешняя часть ядра, продолжающая падать с огромной скоростью, столкнулась с жестким ядром. В результате возникла ударная волна, которая устремилась к внешней поверхности звезды, но поток нейтрино обогнал ее, сорвал внешние оболочки и развеял их в пространстве. Через 160 тыс. лет этот поток нейтрино достиг Земли и был зафиксирован в подземных нейтринных лабораториях Японии, СССР и США. Пульсарами назвали источники пульсирующего излучения, характер которого был не похож на известный ранее (типа цефеид). Радиоастрономы А. Хьюиш, С.Белл, И.Пилкингтон, П.Скотт и Р. Коллинз обнаружили на X= 3,68 м необычные радиосигналы, длящиеся 0,3 с (1968). Сигналы с точностью до 10-8 с повторялись через 1,337 с в течение полугода, но амплитуда сигнала менялась. Такой характер сигнала напоминал передачи земных радиостанций, в которых на строго ритмичные высокочастотные сигналы накладываются колебания звуковой частоты. К настоящему времени открыто уже более двухсот пульсаров. Регистрируя излучение пульсаров на различных, но близких час- 336

тотах, удалось по запаздыванию сигнала на большей длине волны (при предположении о некоторой плотности плазмы в межзвездной среде) определить расстояние до них. Оказалось, что все пульсары находятся на расстояниях 100 — 25000 св. лет, т.е. принадлежат нашей Галактике, группируясь вблизи ее плоскости. Возможно, что большинство открытых пульсаров находится в том же спи-ральном рукаве, что и Солнце. Пульсар NP 0531 в центре Крабо-видной туманности отождествляли со звездой, которую считают остатком от вспышки Сверхновой в 1054 г. С развитием рентгеновской астрономии было замечено, что основную долю энергии пульсары излучают в этом диапазоне, и рост периода излучения пульсаров со временем позволяет оценить их возраст. Пульсирующий характер излучения объясняют быстрым вращением звезды и наличием сильного магнитного поля с индукцией до 100 млн Тл. Если магнитная ось не совпадает с осью вращения, то образуется «магнитный конус», попав в который заряженная частица может ускориться до скоростей, близких к световым, излучая энергию в направлении своего движения. Возникает узконаправленный пучок нетеплового излучения, и этот радиоимпульс регистрируется на Земле. Для пульсаров с периодом 0,5 — 2 с возраст составляет от 106 до 30 106 лет, т.е. это сравнительно молодые объекты Галактики. Но явление пульсара не связано с пульсациями самой нейтронной звезды. При плотности нейтронной звезды 1015 г/см3 период пульсаций равен всего 0,001 с, что в сотни раз меньше наблюдаемых периодов у пульсаров. Поэтому была разработана модель вращающейся нейтронной звезды, у которой ось вращения не совпадает с магнитной. В 1985 г. появилась гипотеза, что источник рентгеновского излучения Лебедь Х-3 представляет собой кварковую звезду. В 1989 г. в центре взорвавшейся СН 1987 А обнаружили пульсар с частотой вращения до 2000 об/с, самый быстрый из известных, и также предположили, что он является кварковой звездой. Считается, что после такой вспышки остаток звезды должен превратиться в белого карлика и туманность. Массы звезд определяют их конечные судьбы. Гипотезу о том, что возможно существование звезд огромной плотности, состоящих только из нейтронов, высказал Ландау еще в 1932 г. сразу же после открытия нейтрона. Через два года эту идею развили В. Ба-аде и Ф. Цвикки. Они показали, что такие звезды могут образовываться при взрывах Сверхновых — конечная стадия эволюции массивных звезд. Если в ядре звезды образовались атомы железа, оно будет далее сжиматься и разогреваться под действием сил гравитации. Железо начнет распадаться на протоны и нейтроны, затем протоны, взаимодействуя с электронами, превратятся в нейтроны. Получится компактная нейтронная звезда. Снаружи нейтронное ядро будет обрамлять железная кора температурой до 106 К. 337