Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diskretnaya_matematika / 4.Краткий конспект лекций.doc
Скачиваний:
106
Добавлен:
19.05.2015
Размер:
709.12 Кб
Скачать

4.6. Классы функций алгебры логики

Над множеством функций F введём операцию суперпозиции функций, состоящую в замене некоторых аргументов одной из fÎF на функции из F. В результате получается новая функция, порождённая суперпозицией. При этом будем считать, что в общем случае аргументы у функций все различны, в частном случае множества аргументов функций могут пересекаться или совпадать. Полученную функцию можно снова использовать в суперпозиции и т.д.

Пример. Пусть F={x&y, x®y}. Результатом суперпозиции может быть функция х®(y×z)

Множество всех функций, которые могут быть порождены с помощью суперпозиции из функций множества F, назовём классом функций, порождённых F, и обозначим как ½F½. Множество F называют порождающим множеством класса ½F½

Порождающее множество данного класса называется базисом, если никакое его собственное подмножество данный класс не порождает.

Инженерная трактовка. Сопоставим множеству F множество элементов, реализующих функции из F. Тогда суперпозиции сопоставляется схема из этих элементов, множеству функций класса ½F½–множество всех функций, которые могут быть реализованы такими схемами.

Для рассматриваемого выше примера схема приведена на рис. 4.1.

Рассмотрим основные классы функций алгебры логики.

4.6.1. Монотонные функции

Определение. Два набора значений двоичных переменных a=<a1,a2,…,an> и b=<b1,b2,…,bn> назовём сравнимыми и будем писать a³ b, если "i , i=1,…,n ai ³ bi. Здесь ³ понимается в обычном виде: 1>0.

Еслиa³ b и b³ a, наборы считаются несравнимыми.

Пример. Наборы a=<010111> и b=<010101> сравнимы и a³b. Набор a и c=<100111> несравнимы.

Определение. Функция f называется монотонной, если для любых двух наборов значений входных переменных a и b из того, что a³b, следует, что f(a)³f(b).

Свойства монотонных функций.

Нулевой набор значений сравним с любым набором и является меньшим любого из них. Значит, если монотонная функция равна единице на этом наборе, то она равна единице и на любом наборе, т.е. равна константе. Точно так же, если на единичном наборе значений монотонная функция равна нулю, то она не может быть единицей ни на каком наборе, так как единичный набор больше всякого другого набора.

Пусть функция на наборе a, отличном от единичного, равна 1, и пусть значение i-ой компоненты в нём равно 0. Это значит, что на наборе, который отличается только тем, что i-ая переменная в нём равна 1, функция тоже примет единичное значение. Это означает, что конъюнкции в ДНФ, соответствующие этим наборам, можно склеить по переменной xi. Точно так же, для набора со значением переменной 0 (т.е. с возможным значением в конъюнкции переменной с инверсией) найдётся набор со значением переменной 1, что приведёт к склеиванию по этой переменной. Следовательно, в минимальной ДНФ монотонной функции нет переменных в инверсной форме.

Из этого свойства можно вывести, что суперпозиция монотонных функций снова будет монотонной функцией, т.е. множества монотонных функций образует класс монотонных функций, обозначаемый как M. Базис класса М образуют обе константы и пара функций – конъюнкция и дизъюнкция, т.е. множество {x×y, xÚy, 0,1}.

Задача. Докажите, что константы должны присутствовать в базисе.