Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Интег.(ра.тет.) - правка.doc
Скачиваний:
74
Добавлен:
19.05.2015
Размер:
3.07 Mб
Скачать

§2. Методы вычисления определенных интегралов

Так как формула Ньютона–Лейбница сводит задачу вычисления определенного интеграла от непрерывной функции к нахождению первообразной, то все основные методы вычисления неопределенных интегралов переносятся и на задачу вычисления определенных интегралов. Сформулируем эти методы с учетом специфики определенных интегралов.

1. Непосредственное интегрирование

Типовой пример

Вычислить определенный интеграл .

►Используя формулу Ньютона–Лейбница, получим:

.◄

2. Замена переменной в определённом интеграле

ТЕОРЕМА

Пусть:

  1. , ;

  2. для ;

  3. .

Тогда .

При решении задач нельзя забывать о том, что при переходе к новой переменной надо обязательно вычислить новые пределы интеграла.

Типовые примеры

Вычислить интегралы.

1. .

.◄

2. .

.

3. .

►Воспользуемся формулой замены переменной в определенном интеграле:

и применим подстановку т.е.x = t². Определим новый промежуток интегрирования: х = 4 при t = 2; х = 9 при t = 3. Следовательно,

3. Формула интегрирования по частям для определённого интеграла

ТЕОРЕМА

Пусть .Тогда

.

Типовые примеры

Вычислить интегралы.

1. .

►Воспользуемся формулой интегрирования по частям в определенном интеграле. Имеем

. ◄

2. .

.

3. .

.◄

§3. Геометрические приложения определенного интеграла

1. Площадь плоской области

1.1. Декартовы координаты

Если на отрезке, торавен площади криволинейной трапеции, ограниченной снизу отрезком, слева и справа – прямымии, сверху – функцией. Следствие: если фигура ограничена сверху кривой, снизу – кривой, слева и справа – отрезками прямыхи, то её площадь равна.

Типовые примеры

1) Найти площадь области , ограниченной кривымипри условии, что(дальше мы будем писать так:).

►При решении таких задач следует обязательно изобразить исследуемый геометрический объект. Для определения нижнего предела интегрирования надо найти точку пересечения кривых, уравнение имеет два корня:и;

Подходящий корень – . Область ограничена сверху параболой, снизу – прямой, справа – прямой, крайняя левая точка –, поэтомуЕсли область имеет более сложную структуру, её следует разбить на простые части. ◄

2) Вычислить площадь фигуры, ограниченной графиками функций и:

►Построим графики функций и найдем их точки пересечения. Точки пересечения: .Площадь фигуры, ограниченной линиями находится по формуле:

3) Найти площадь фигуры, ограниченной эллипсом .

►Эллипс имеет две оси симметрии: координатные оси 0х и 0у. Поэтому площадь S фигуры равна учетверённой площади S1 части (D1) фигуры, расположенной в первой четверти (заштриховано). Фигура (D1) ограничена сверху линией , снизу – осью 0х, слева – осью 0у. Поэтому

. Отсюда находим S = 4S1 = ab. ◄

1.2. Область задана в полярных координатах

Если область – сектор, ограниченный лучами,и кривой. В Этом случае.

Типовые примеры

1. Найти площадь, ограниченную лемнискатой .

►Точки лемнискаты расположены в секторахи; кроме того, при решении таких задаче целесообразно использовать симметрию фигуры, поэтому мы найдём площадь части, расположенной в сектореи учетверим её:

2. Найти площадь, лежащую внутри кардиоиды вне окружности.

►Найдём разность площадей, лежащих внутри кардиоиды и окружности. Для верхней части кардиоиды ; для верхней части окружности, поэтому

1.3. Область ограничена кривыми, заданными параметрически Если кривая, ограничивающая криволинейную трапецию задана в параметрическом виде, то переход в интегралек переменнойприводит к формуле.

Типовой пример

Найти площадь, ограниченную астроидой ().

►Используем симметрию фигуры. Мы найдём площадь части фигуры, расположенной в первом квадранте (), и учетверим её. Точкаполучается при, точка– при, поэтому