- •Оглавление
- •Аналитические технологии
- •Формализация нейронных сетей
- •Принцип обучения искусственных нейронных сетей
- •Концепция обучения нейронной сети, предложенная Хэбом
- •Сбор данных для нейронной сети
- •Прикладные возможности нейронных сетей
- •Переобучение и обобщение
- •Персептрон
- •Алгоритм обратного распространения ошибки
- •Сигмоидальный нейрон
- •Нейрон типа «адалайн»
- •Инстар и оутстар Гроссберга
- •Нейрон типа wta (Winner Takes All)
- •08.10.2011 Модель нейрона Хэбба
- •Стохастическая модель нейрона
- •Стохастические алгоритмы обучения
- •Настройка числа нейронов в скрытых слоях многослойных сетей в процессе обучения
- •Алгоритмы сокращения
- •Конструктивные алгоритмы
- •Упрощенные алгоритмы расщепления
- •Радиальная базисная сеть
- •Вероятностные нейронные сети
- •Линейные нейронные сети
- •Обучение
- •Сети с самоорганизацией на основе конкуренции
- •12.11.2011 Модели ассоциативной памяти. Сети Хопфилда
- •Когнитивные карты
- •19.11.2011 Генетические алгоритмы Естественный отбор и генетическое наследование
- •Модель эволюции в природе, реализованная программно
- •Символьная модель простого генетического алгоритма
- •Работа простого генетического алгоритма
- •26.11.2011 Шима (Schema)
- •Применение аналитических технологий
- •03.12.2011
- •Бизнес-приложения
- •Программные реализации аналитических технологий
- •Список литературы
12.11.2011 Модели ассоциативной памяти. Сети Хопфилда
В нейронных сетях с обратной связью допускается передача выходных сигналов нейронов на входные нейроны сети. Это приводит к переходным процессам в сети, после которого сеть может устанавливаться в некоторое устойчивое состояние. Однако, возможна ситуация, при которой в сети никогда не наступит ситуация равновесия. В этом случае сеть является неустойчивой.
Будем рассматривать сети с обратными связями, устойчивость которых при определенных условиях может быть доказано. К таким сетям относится сеть Хопфилда.

Рисунок 31 Модель ассоциативной памяти

,
где
- синоптическая карта сети.
Сеть
Хопфилда рассматривается как примитивная
модель ассоциативной памяти, позволяющая
по искаженному входному образу извлечь
ближайший к нему эталонный. Для этого
сеть предварительно должна быть обучена
на выборке. Обучение осуществляется
без учителя путем предъявления сети
серии входных образов
.
Предъявляемые образы запоминаются в
синоптической карте, которая формируется
следующим образом.

Синоптические веса формируются путем вычисления корреляций между состояниями отдельных нейронов. Такое задание весов позволяет сети запомнить входные образы и обеспечить в дальнейшем возможность извлечения неполных или искаженных данных.
В процессе функционирования нейронной сети сеть активируется некоторым входным образом, а затем сети представляется возможность опуститься в ближайший энергетический минимум. Алгоритм функционирования сети Хопфилда можно представить состоящим из следующих шагов.
Формирование синоптической карты сети путем ее обучения на серии входных образов;
Начальная активация сети входным образом C;
Итерационное вычисление выходного сигнала сети, пока сеть не достигнет установившегося состояния;
Пример:


- исходный эталон

Емкость сети -
образов.
Сеть Хопфилда является ассоциативной сетью, в которой входные образы ассоциируются сами с собой и не могут быть ассоциированы с другими образами.
Рассмотрим нейронную сеть, состоящую из двух слоев нейронов, называемой двунаправленной ассоциативной памятью.

Рисунок 32 Двунаправленная ассоциативная память
,
где
- входные образы,
.
В
данной сети в качестве функции активации
нейронов используется ступенчатая
пороговая функция. В ?? обучения сети
предъявляются примеры
,
где
и формируется синоптическая карта. В
соответствии со структурой сети, прямым
связям (от слоя
к
)
соответствует синоптическая картаW,
а обратным -
.
Функционирование сети осуществляется следующим образом:
Активация слоя
сети
входным образом С;Вычисление сигналов на выходах нейронов слоя
согласно
выражению:
или
;Подача на входы нейронов
сигналов
с выходов
по
обратным связям и вычисление новых
состояний нейронов слоя


Повторение шагов 2,3 пока сеть не достигнет стабильного состояния;
Двунаправленная ассоциативная память обладает способностью к исправлению и обобщению. Если искаженный и незавершенный образ подается на вход сети, то сеть способна выдать запомненный ранее выходной образ. Двунаправленная ассоциативная память имеет ограничение на количество образов.
