Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебник Михайлова КСЕ

.pdf
Скачиваний:
65
Добавлен:
18.05.2015
Размер:
2.04 Mб
Скачать

3.1. Ньютоновская концепция абсолютного пространства и времени 61

Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета.

Инерциальные системы отсчета — это такие системы, в которых справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы, взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения.

Теоретически может существовать сколь угодно равноправных инерциальных систем отсчета, и во всех таких системах законы физики одинаковы. Это утверждает принцип относительности Галилея (1636 г.).

Научное доказательство существования всемирного тяготения и математическое выражение описывающего его закона стало возможным только на основе открытых И. Ньютоном законов механики. Закон всемирного тяготения был сформулирован Ньютоном в труде «Математические начала натуральной философии» (1687 г.).

Закон всемирного тяготения Ньютон формулирует в следующих тезисах: «тяготение существует для всех тел вообще и пропорционально массе каждого из них», «тяготение к отдельным равным частицам тел обратно пропорционально квадратам расстояний мест к частицам». Этот закон известен в виде:

F Gm1m2 , r 2

ãäå m1, m2 — массы двух частиц, r — расстояние между ними, G — гравитационная постоянная (в системе СИ G = 6,672 · 10–11 ì2/êã2). Физи- ческий смысл гравитационной постоянной заключается в том, что она характеризует силу притяжения двух масс весом в 1 кг на расстоянии в 1 м.

Открыв закон всемирного тяготения, Ньютон смог дать ответ на вопрос, почему Луна обращается вокруг Земли и почему планеты движутся вокруг Солнца. В каждом отдельном случае он мог рассчитать силу тяготения. Но как передается взаимодействие между массами, притягивающимися друг к другу, какова природа этой силы, Ньютон объяснить не мог.

62Глава 3. Пространство, время, принципы относительности

Âтрудах Ньютона тяготение — это сила, которая действует на больших расстояниях и как бы без какого-то материального посредника.

Это привело к понятию «дальнодействие». Природу «дальнодействия» Ньютон объяснить не мог. Он думал о каком-то материальном «агенте», с помощью которого осуществляется гравитационное взаимодействие, но в решении этой проблемы он потерпел неудачу. Основываясь на законе всемирного тяготения Ньютона, небесная механика допускает принципиальную возможность мгновенной передачи сигналов, что противоречит современной физике (общей теории относительности). Поэтому буквальное понимание закона тяготения Ньютона с современной точки зрения недопустимо.

Ньютоновская механистическая парадигма в естествознании господствовала более 200 лет, хотя и подвергалась критике по ряду позиций, в том числе и в понимании пространства и времени (Лейбниц, Гегель, Беркли и др.). В конце XIX и в начале XX в. возникли принципиально новые научные представления об окружающей природе. Появились новые парадигмы: сначала релятивистская, а затем квантовая (см. ранее). В физическую картину мира полноправно вошла концепция поля как материальной среды, связывающей частицы вещества, все физические объекты материального мира. В современной физике известны четыре вида взаимодействия материальных объектов: электромагнитное, гравитационное, сильное и слабое (см. выше). Они ответственны за все процессы взаимодействия.

3.2. Законы сохранения

Рассмотрим наиболее общие законы сохранения, которым подчиняется весь материальный мир и которые вводят в физику ряд фундаментальных понятий: энергия, количество движения (импульс), момент импульса, заряд.

Закон сохранения импульса

Как известно, количеством движения, или импульсом, называют произведение скорости на массу движущегося тела: p mv Эта физиче- ская величина позволяет найти изменение движения тела за какойнибудь определенный промежуток времени. Для решения этой задачи следовало бы применять второй закон Ньютона бесчисленное число раз, во все промежуточные моменты времени. Закон сохранения коли- чества движения (импульса) можно получить, используя второй и тре-

3.2. Законы сохранения 63

тий законы Ньютона. Если рассматривать две (или более) материальные точки (тела), взаимодействующие между собой и образующие систему, изолированную от действия внешних сил, то за время движения импульсы каждой точки (тела) могут изменяться, но общий импульс системы должен оставаться неизменным:

m1v + m1v2 = const.

Взаимодействующие тела обмениваются импульсами при сохранении общего импульса.

В общем случае получаем:

N

P mivi const,

i 1

ãäå P — общий, суммарный импульс системы, mi vi — импульсы отдельных взаимодействующих частей системы.

Сформулируем закон сохранения импульса:

Если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

Пример действия закона сохранения импульса можно рассмотреть на процессе взаимодействия лодки с человеком, которая уткнулась носом в берег, а человек в лодке быстро идет из кормы в нос со скоростью v1. В этом случае лодка отойдет от берега со скоростью v2:

m v m v 0, v m1

v1 .

1

1

2

2

2

m2

 

 

Аналогичный пример можно привести со снарядом, который разорвался в воздухе на несколько частей. Векторная сумма импульсов всех осколков равна импульсу снаряда до разрыва.

Закон сохранения момента импульса

Вращение твердых тел удобно характеризовать физической величи- ной, которая называется моментом импульса.

При вращении твердого тела вокруг неподвижной оси каждая отдельная частица тела движется по окружности радиусом ri с какой-то линейной скоростью vi . Скорость vi и импульс p mi vi перпендикулярны радиусу ri. Произведение импульса p mivi на радиус ri называется моментом импульса частицы:

64 Глава 3. Пространство, время, принципы относительности

Li mivi ri Pi ri .

Момент импульса всего тела:

n

L mivi ri .

i 1

Если заменить линейную скорость угловой (vi = ri), òî

L

n

m r 2

n

m r 2

J,

 

 

i i

 

i i

 

 

i 1

 

i 1

 

 

ãäå J = mr2 — момент инерции.

Момент импульса замкнутой системы не изменяется во времени, то есть L = const è J = const.

При этом моменты импульса отдельных частиц вращающегося тела могут как угодно изменяться, однако общий момент импульса (сумма моментов импульса отдельных частей тела) остается постоянным. Продемонстрировать закон сохранения момента импульса можно, наблюдая вращение фигуриста на коньках с руками, вытянутыми в стороны, и с руками, поднятыми над головой. Так как J = const, то во втором случае момент инерции J уменьшается, значит, при этом должна возрасти угловая скорость , так как J = const.

Закон сохранения энергии

Энергия — это универсальная мера различных форм движения и взаимодействия. Энергия, отданная одним телом другому, всегда равна энергии, полученной другим телом. Для количественной оценки процесса обмена энергией между взаимодействующими телами в механике вводится понятие работы силы, вызывающей движение.

Кинетическая энергия механической системы — это энергия механического движения этой системы. Сила, вызывающая движение тела, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Как известно, тело массой m, движущееся со ско-

ростью v, обладает кинетической энергией E = mv2/2. Потенциальная энергия — это механическая энергия системы тел,

которые взаимодействуют посредством силовых полей, например посредством гравитационных сил. Работа, совершаемая этими силами, при перемещении тела из одного положения в другое не зависит от траектории движения, а зависит только от начального и конечного положения тела в силовом поле.

3.2. Законы сохранения 65

Такие силовые поля называют потенциальными, а силы, действующие в них, — консервативными. Гравитационные силы являются кон-

сервативными силами, а потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

EÏÎÒ = mgh,

ãäå g — ускорение свободного падения.

Полная механическая энергия равна сумме кинетической и потенциальной энергии:

E = EÊÈÍ + EÏÎÒ

Закон сохранения механической энергии (1686 г., Лейбниц) гласит, что в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется неизменной во времени. При этом могут происходить превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах.

Существуют еще один вид систем, в которых механическая энергия может уменьшаться за счет преобразования в другие формы энергии. Например, при движении системы с трением часть механической

энергии уменьшается за счет трения. Такие системы называются диссипативными, то есть системами, рассеивающими механическую энер-

гию. В таких системах закон сохранения полной механической энергии несправедлив. Однако при уменьшении механической энергии

всегда возникает эквивалентное этому уменьшению количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. Здесь

проявляется свойство неуничтожимости материи и ее движения.

Закон сохранения заряда

Электрические заряды — это источники электромагнитного поля. Вся совокупность электрических явлений есть проявление существования движения и взаимодействия электрических зарядов.

В конце XIX в. английским физиком Томсоном был открыт электрон — носитель отрицательного элементарного электрического заряда (–1,6 · 10–19 Кл), а в начале XX в. Резерфорд открыл протон, обладающий таким же по величине элементарным положительным зарядом. Поскольку каждая частица характеризуется определенным, присущим ей электрическим зарядом, закон сохранения заряда можно рассматривать как следствие сохранения числа частиц, если при этом не происходит взаимопревращения частиц.

66 Глава 3. Пространство, время, принципы относительности

При электризации физических тел число заряженных частиц не меняется, а происходит лишь их перераспределение в пространстве.

В общем закон сохранения заряда можно сформулировать так:

в замкнутой системе алгебраическая сумма зарядов системы остается неизменной во времени, какие бы процессы ни происходили внутри этой замкнутой системы.

Такое понятие существовало в физике давно, а в 1843 г. М. Фарадей экспериментально подтвердил этот закон. Как и другие законы сохранения, закон сохранения заряда справедлив на всех структурных уровнях материального мира.

Закон сохранения заряда вместе с законом сохранения энергии характеризует устойчивость электрона. Он не может превратиться самопроизвольно в более тяжелую частицу или в более легкую.

В первом случае это не позволяет закон сохранения энергии, а во втором — закон сохранения заряда.

3.3. Принципы современной физики

Принцип симметрии

Под симметрией понимают однородность, пропорциональность, гармонию каких-то материальных объектов. Асимметрия — понятие противоположное. Любой физический объект содержит элементы симметрии и асимметрии. Рассмотрим симметрии в физике, химии и биологии.

В физике симметрия определяется следующим образом: если физические законы не меняются при определенных преобразованиях, которым может быть подвергнута система (физический объект), то счи- тается, что эти законы обладают симметрией (или инвариантны) от-

носительно этих преобразований.

Симметрии делят на пространственно-временные è внутренние, последние относятся только к микромиру.

Среди пространственно-временных рассмотрим основные.

1.Сдвиг времени. Изменение начала отсчета не изменяет физиче- ских законов. Время однородно по всему пространству.

2.Сдвиг системы отсчета пространственных координат. Такая операция не изменяет физических законов. Все точки пространства равноправны, и пространство однородно.

3.3. Принципы современной физики 67

3.Поворот системы отсчета пространственных координат также сохраняет физические законы неизменными — значит, пространство изотропно.

4.Классический принцип относительности Галилея устанавливает симметрию между покоем и равномерным прямолинейным движением.

5.Обращение знака времени не изменяет фундаментальных законов в макромире, то есть процессы макромира могут описываться и при обращении знака времени. На уровне макромира наблюдается необратимость процессов, так как они связаны с неравновесным состоянием Вселенной.

Âхимии симметрии проявляются в геометрической конфигурации молекул. Это определяет как химические, так и физические свойства молекул. Большинство простых молекул имеют оси симметрии, плос-

кости симметрии. Например, молекула аммиака NH3 представляет собой правильную треугольную пирамиду, молекула метана CH4 — правильный тетраэдр. Представления о симметрии весьма полезны при теоретическом анализе строения комплексных соединений, их свойств

èповедения.

Âбиологии симметрии давно изучаются специалистами. Наибольший интерес представляет структурная симметрия биообъектов. Она проявляется в виде того или иного закономерного повторения. На низших этапах развития живой природы встречаются представители всех классов точечной симметрии (правильные многогранники, шары). На более высоких ступенях эволюции встречаются растения и животные в основном с аксиальной и актиноморфной симметрией. Биообъекты с аксиальной симметрией характеризуются осью симметрии (медуза, цветок флокса), а с актиноморфной — осью симметрии и пересекающимися на этой оси плоскостями (например, бабочка с двусторонней симметрией).

Широко известна симметрия кристаллов. Это свойство кристаллов как бы совмещаться с собой в различных положениях путем поворотов, отражений, параллельных переносов. Симметрия внешней формы кристаллов определяется симметрией их атомного строения.

Все это связано с симметрией физических свойств кристаллов.

Симметрия и законы сохранения

В 1918 г. немецкий математик Эмми Нетер доказала фундаментальную теорему, устанавливающую связь между свойствами симметрии

68 Глава 3. Пространство, время, принципы относительности

и законами сохранения. Суть теоремы в том, что непрерывными преобразованиями в пространстве–времени, оставляющими инвариантным действие, являются: сдвиг во времени, сдвиг в пространстве, трехмерное пространственное вращение, четырехмерные вращения в про- странстве–времени. Согласно теореме Нетер, из инвариантности относительно сдвига во времени следует закон сохранения энергии; из инвариантности относительно пространственных сдвигов — закон сохранения импульса; из инвариантности относительно пространственного вращения — закон сохранения момента импульса; инвариантность относительно преобразований Лоренца (четырехмерные вращения в пространстве–времени) — обобщенный закон движения центра масс: центр масс релятивистской системы движется равномерно и прямолинейно. Теорема Нетер относится не только к пространственно-времен- ным симметриям, но и к внутренним. Например, при всех превращениях элементарных частиц сумма электрических зарядов частиц сохраняется неизменной.

Закон сохранения заряда в макросистемах был подтвержден экспериментальным путем задолго до Нетер, в 1843 г. М. Фарадеем. Строгого научного объяснения причин выполнения закона сохранения заряда пока нет.

Принцип дополнительности

Принцип дополнительности является основополагающим в современной физике. Понятие дополнительности было введено в науку Н. Бором в 1928 г. Это было время становления квантовой механики. Трудно переоценить значение принципа дополнительности для развития наших представлений о мире и познания различных закономерностей. Мы практически всегда оперируем принципом дополнительности. Так, для характеристики многих физических процессов используется одновременно две величины. Например, при оценке движения материальной точки — координата точки и ее скорость. Одна величина как бы дополняет другую. Это характерно практически для любых движущихся материальных объектов. Так работает на практике принцип дополнительности.

Особенно ярко принцип дополнительности выступает в микромире. Все микрочастицы имеют дуалистическую корпускулярно-волно- вую природу. Инструментальные способы позволили обнаружить эту двойственность микрочастиц сначала у фотона, затем у электрона и других микрочастиц. Любое устройство для детектирования микро-

3.3. Принципы современной физики 69

частиц регистрирует их как нечто целое, локализованное в весьма малой области пространства. С другой стороны, можно наблюдать дифракцию и интерференцию этих же микрочастиц на кристаллических решетках или искусственно созданных препятствиях при их движении, то есть микрочастицы обладают выраженными волновыми свойствами.

Однако при оценке явлений окружающего нас мира мы находимся в плену наших макроскопических представлений. Поэтому наблюдатель, оценивая микропроцессы, должен, принимая без сомнения микрочастицы как локализованные объекты (частицы или корпускулы), одновременно «домысливать» их волновые свойства. Наблюдатель должен применять два дополняющих друг друга понятия. Только в совокупности этих двух наборов понятий информация о микропроцессах будет достоверной.

Таким образом, одна характеристика способна отразить только часть истины, а собрав противоречащие друг другу характеристики одного объекта, можно получить полную картину этого объекта. В общей форме принцип дополнительности можно сформулировать так:

В области квантовых явлений наиболее общие физические свойства какой-либо системы должны быть выражены с помощью дополняющих друг друга пар независимых переменных, каждая из которых может быть лучше определена только за счет соответствующего уменьшения степени определенности другой1.

Принцип неопределенности Гейзенберга

Принцип неопределенности является фундаментальным законом микромира. Его можно считать частным выражением принципа дополнительности.

В классической механике частица движется по определенной траектории, и в любой момент времени возможно точно определить ее координаты и ее импульс. Относительно микрочастицы такое представление неправомерно. Микрочастица не имеет четко выраженной траектории, она обладает и свойствами частицы, и свойствами волны (корпускулярно-волновой дуализм). В этом случае понятие «длина волны в данной точке» не имеет физического смысла, а поскольку импульс микрочастицы выражается через длину волны — p h , то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату, и наоборот.

1 Формулировка принадлежит известному физику Д. Бому.

70Глава 3. Пространство, время, принципы относительности

Â.Гейзенберг (1927 г.), учитывая двойственную природу микроча- стиц, пришел к выводу, что невозможно одновременно с любой наперед заданной точностью характеризовать микрочастицу и координатами, и импульсом.

Соотношениями неопределенностей Гейзенберга называются неравенства:

x · px h, y · py h, z · pz h.

Здесь x, y, z означают интервалы координат, в которых может быть локализована микрочастица (эти интервалы и есть неопределенности координат), px, py, pz означают интервалы проекций импульса на координатные оси x, y, z, h — постоянная Планка. Согласно принципу неопределенностей, чем точнее фиксируется импульс, тем зна- чительнее будет неопределенность по координате, и наоборот.

Принцип соответствия

По мере развития науки, углубления накопленных знаний новые теории становятся более точными. Новые теории охватывают все более широкие горизонты материального мира и проникают в ранее неизведанные глубины. Динамические теории сменяются статическими.

Каждая фундаментальная теория имеет определенные границы применимости. Поэтому появление новой теории не означает полного отрицания старой. Так, движение тел в макромире со скоростями зна- чительно меньшими, чем скорость света, всегда будет описываться классической механикой Ньютона. Однако при скоростях, соизмеримых со скоростью света (релятивистских скоростях), механика Ньютона неприменима.

Объективно имеет место преемственность фундаментальных фи-

зических теорий. Это и есть принцип соответствия, который можно сформулировать следующим образом: никакая новая теория не может быть справедливой, если она не содержит в качестве предельного слу- чая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.

3.4. Понятие о состоянии системы. Лапласовский детерминизм

В классической физике система понимается как совокупность какихто частей, связанных между собой определенным образом. Эти части