Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы машины.docx
Скачиваний:
30
Добавлен:
17.05.2015
Размер:
770.14 Кб
Скачать

1. По величине передаточного числа:

1.1.                    с передаточным числом u ³ 1 – редуцирующие (редукторы - большинство зубчатых передач);

1.2.                    с передаточным числом u < 1 – мультиплицирующие (мультипликаторы).

2.      По взаимному расположению валов:

2.1.  с параллельными валами - цилиндрические зубчатые передачи (рис. 4.1, а…г);

2.2. с пересекающимися осями валов - конические зубчатые передачи

(конические передачи с углом 90° между осями валов называют ортогональными; рис. 4.1, д…ж);

2.3. с перекрещивающимися осями валов - червячныевинтовые (рис. 4.1, и), гипоидные (рис. 4.1, з);

2.4. с преобразованием движения – реечные (рис. 4.1, к).

3.  По расположению зубьев относительно образующей поверхности колеса:

3.1. прямозубые - продольная ось зуба параллельна образующей поверх­ности колеса (рис. 4.1, а, г, д, к);

3.2. косозубые - продольная ось зуба направлена под углом к образующей поверхности колеса (рис. 4.1, б, е, и);

3.3. шевронные - зуб выполнен в форме двух косозубых колес со встреч­ным наклоном осей зубьев (рис. 4.1, в);

3.4. с круговым зубом - ось зуба выполнена по окружности относительно образующей поверхности колеса (рис. 4.1, ж, з).

4.  По форме зацепляющихся звеньев:

4.1. с внешним зацеплением - зубья направлены своими вершинами от оси вращения колеса (рис. 4.1, а…в);

4.2. с внутренним зацеплением - зубья одного из зацепляющихся колес направлены своими вершинами к оси вращения колеса (рис. 4.1, г);

4.3. реечное зацепление - одно из колес заменено прямолинейной зуб­чатой рейкой (рис. 4.1, к);

4.4. с некруглыми колесами.

5.  По форме рабочего профиля зуба:

5.1. эвольвентные - рабочий профиль зуба очерчен по эвольвенте круга (линия описываемая точкой прямой, катящейся без скольжения по окружности);

5.2. циклоидальные - рабочий профиль зуба очерчен по круговой циклоиде (линия описываемая точкой окружности, катящейся без скольжения по другой окружности);

5.3. цевочное (разновидность циклоидального) – зубья одного из колес, входящих в зацепление, заменены цилиндрическими пальцами – цевками;

5.4. с круговым профилем зуба (зацепление Новикова) – рабочие профили зубьев образованы дугами окружности практически одинаковых радиусов.

6. По относительной подвижности геометрических осей зубчатых колес:

6.1. с неподвижными осями колес - рядовые передачи (рис. 4.1);

6.2. с подвижными осями некоторых колес - планетарные передачи.

7. По жесткости зубчатого венца колес, входящих в зацепление:

7.1. с колесами неизменяемой формы (с жестким венцом);

7.2. включающая колеса с венцом изменяющейся формы (гибким).

8. По окружной (тангенциальной) скорости зубьев:

8.1. тихоходные (Vз < 3 м/с);

8.2. среднескоростные (3< Vз < 15 м/с);

8.3. быстроходные (Vз > 15 м/с).

9. По конструктивному исполнению:

9.1. открытые (бескорпусные);

9.2. закрытые (корпусные).

Наиболее широкое применение находят редуцирующие зубчатые передачи вращательного движения, в том числе и в многоцелевых гусеничных и колесных машинах (коробки передач, бортовые редукторы, приводы различных устройств). Поэтому дальнейшее изложение, если это не упоминается особо, касается только передач вращательного движения.

Достоинства зубчатых передач: 1. Высокая надежность работы в широком диапазоне нагрузок и скоростей. 2. Большой ресурс. 3. Малые габариты. 4 Высокий КПД. 5. Относительно малые нагрузки на валы и подшипники. 5. Постоянство предаточного числа. 6. Простота обслуживания.

Недостатки зубчатых передач: 1. Сложность изготовления и ремонта (необходимо высокоточное специализированное оборудование). 2. Относительно высокий уровень шума, особенно на больших скоростях. 3. Нерациональное использование зубьев – в работе передачи одновременно участвуют обычно не более двух зубьев каждого из зацепляющихся колёс.

Червячная передача – это передача, два подвижных звена которой, червяк и червячное колесо, образуют совместно высшую зубчато-винтовую кинематическую пару, а с третьим, неподвижным звеном, низшие вращательные кинематические пары.

Рис. 6.1. Червячная передача: 1 – червяк; 2 – червячное колесо.

Как следует из определения, червячная передача обладает свойствами как зубчатой (червячное колесо на своем ободе несет зубчатый венец), так и винтовой (червяк имеет форму винта) передач. Червячная передача, также как и винтовая, характеризуется относительно высокими скоростями скольжения витков червяка по зубьям червячного колеса.

Достоинства червячных передач: 1) компактность и относительно небольшая масса конструкции; 2) возможность получения больших передаточных чисел в одной ступени – стандартные передачи  80, специальные   300; 3) высокая плавность и кинематическая точность; 4) низкий уровень шума и вибраций; 5) самоторможение при обратной передаче движения, то есть невозможность передачи движения в обратном направлении - от ведомого червячного колеса к ведущему червяку.

Недостатки червячных передач обусловлены большими скоростями скольжения витков червяка по зубьям червячного колеса, а также значительными осевыми силами, действующими на валах передачи.

Недостатки червячных передач: 1) Низкий КПД и высокое тепловыделение; 2) повышенный износ и уменьшенный срок службы; 3) склонность к заеданию, что вызывает необходимость применения специальных антифрикционных материалов для изготовления зубчатого венца червяч-ного колеса и специальных видов смазки с антизадирными присадками.

  1. Редукторы. Схемы соединения валов в редукторе.

Редуктор – самостоятельная сборочная единица, соединяемая с электродвигателем и рабочей машиной муфтами или открытыми передачами.

Редуктор служит для уменьшения частоты вращения и увеличения крутящего момента. В корпусе размещены зубчатые или червячные передачи, неподвижно закрепленные на валы. Валы опираются на подшипники, размещенные в гнездах корпуса.

Тип редуктора определяется составом передач и положением осей вращения валов в пространстве. Для обозначения передач используют заглавные буквы русского алфавита по простому мнемоническому правилу: Ц – цилиндрическая, П – планетарная, К - коническая, Ч – червячная, Г – глобоидная, В – волновая. Количество одинаковых передач обозначается цифрой. Оси валов, расположенные в горизонтальной плоскости, не имеют обозначения. Если все валы расположены в одной вертикальной плоскости, то к обозначению типа добавляется индекс В. Если ось быстроходного вала вертикальна, то добавляется индекс Б, а к тихоходному соответственно – Т.

Мотор – редукторы обозначаются добавлением спереди буквы М. Например, МЦ2СВ означает мотор – редуктор с двухступенчатой соосной цилиндрической передачей, где горизонтальные оси вращения валов расположены в одной вертикальной плоскости, здесь В не индекс, поэтому пишется рядом с заглавной буквой.

  1. Подшипники скольжения

Подшипником принято называть часть опоры, непосредственно взаимодействующей с цапфой вала или оси.

Классификация подшипников:

1.      По направлению силовой нагрузки, воспринимаемой подшипником 

1.1.   радиальные подшипники воспринимают нагрузку, направленную перпендикулярно (по радиусу) к оси вращения;

1.2.   упорные подшипники воспринимают нагрузку, направленную вдоль оси вращения (упорные подшипники иногда называют подпятниками);

1.3.   радиально-упорные подшипники воспринимают одновременно и радиальную, и осевую нагрузки, при этом величина радиальной нагрузки обычно существенно больше осевой;

1.4.   упорно-радиальные подшипники так же, как и предыдущие, воспринимают и радиальную, и осевую нагрузки, но в этом случае величина радиальной нагрузки значительно меньше осевой.

2.     В зависимости от вида трения 

2.1.   подшипники качения;

2.2.   подшипники скольжения

Подшипники скольжения по конструктивным признакам делятся на неразъёмные (глухие) и разъёмные.

Неразъёмные подшипники скольжения (рис. 10.1) находят широкое применение там, где нагрузки и скорости скольжения невелики (vск  3 м/с) – в приборах и механизмах управления.

Рис. 10.1. Неразъёмные подшипники  скольжения: а) встроенный в корпус;  б) фланцевый

Рис. 10.2. Разъёмный подшипник  скольжения:

Разъёмные подшипники (рис. 10.2) основное применение находят там, где невозможна или нежелательна осевая сборка (шатунные шейки коленчатых валов двигателей внутреннего сгорания), а также в тяжёлом машиностроении для крепления тяжело нагруженных валов.

Рис. 10.3. Самоустанавливающийся подшипник

При большой длине цапф и в некоторых других случаях используют самоустанавливающиеся подшипники (рис. 10.3), которые способны менять в небольших пределах угловое положение продольной оси по отношению к поверхности основания, то есть отслеживать угловое положение поперечного сечения цапфы вала.

Подшипники скольжения обычно имеют прочный корпус, иногда совмещаемый с корпусом механизма (рис. 10.1, а) или другой детали, и вкладыш, выполненный в виде втулки (рис. 10.1, 10.3) или отдельных цилиндрических сегментов (рис. 10.2) и покрытый по поверхности, контактирующей с цапфой вала, антифрикционным материалом, обладающим малым коэффициентом трения в паре с материалом цапфы вала и достаточно высокой износоустойчивостью.

Достоинства подшипников скольжения:

1.       малые габариты в радиальном направлении;

2.       хорошая восприимчивость к динамическим (ударным и вибрационным) нагрузкам;

3.       высокая точность сопряжения;

4.       хорошая прирабатываемость;

5.       высокая долговечность в условиях обильной жидкостной смазки;

6.       возможность работы в водной, абразивной и коррозионно-активной среде (при соответствующем подборе материалов и изготовлении);

7.       возможность сборки (в зависимости от конструкции) как в осевом, так и в радиальном направлении;

8.       простота конструкции и низкая стоимость.

Недостатки подшипников скольжения:

1.      большие габариты в осевом направлении;

2.      значительный расход смазочного материала;

3.      необходимость следить за постоянным поступлением смазочного материала к рабочим поверхностям;

4.      высокий пусковой момент и большой износ в период пуска;

5.      необходимость использования в подшипнике дорогостоящих анти­фрикционных материалов.

  1. Подшипники скольжения

Наряду с подшипниками скольжения в технических устройствах находят широкое применение подшипники, работающие по принципу трения качения – подшипники качения. Рассмотрению конструкции, основных свойств, и основ конструирования узлов с такими подшипниками и посвящена настоящая лекция.

Рис. 11.1. Подшипник  качения (конструкция).

Подшипник качения имеет, как правило, более сложную конструкцию в сравнении с подшипником скольжения и, в подавляющем большинстве случаев, является готовым (то есть изготовленным на специализированном предприятии) изделием, устанавливаемым в механизм или машину без какой-либо дополнительной доработки.

Конструктивно подшипник качения (рис. 11.1), как правило, включает 4 основных элемента: 1) наружное кольцо, обычно устанавливаемое в корпусе, и потому неподвижное; 2) внутреннее кольцо, обычно насаживаемое на цапфу вала, и вращающееся вместе с ней; 3) тела качения (шарики, ролики или другие), обкатывающиеся при работе подшипника по беговым дорожкам наружного и внутреннего колец, и 4) сепаратор, предотвращающий в процессе работы подшипника набегание тел качения друг на друга. В отдельных случаях применяются подшипники, как более простой (например, без одного из колец), так и более сложной (например, с составными кольцами) конструкции.

Подшипники качения широко применяются в стационарных и подвижных машинах многих отраслей машиностроения, в том числе и в МГКМ (многоцелевых гусеничных и колёсных машинах). В силу этого они стандартизованы, выпускаются в массовом количестве на специализированных предприятиях с высокой степенью автоматизации производства, что гарантирует их относительно невысокую стоимость.

Достоинства подшипников качения:

1.      малые потери на трение (приведённый к цапфе вала коэффициент трения подшипников качения в зависимости от типа подшипника и других его характеристик составляет f= 1,510-3…610-3);

2.      малые габариты в осевом направлении;

3.      низкая стоимость при высокой степени взаимозаменяемости;

4.      малый пусковой момент сопротивления, практически одинаковый с моментом, действующим в процессе установившегося движения;

5.      малый расход смазочных материалов и, следовательно, малый объ­ём работ по обслуживанию;

6.      пониженные требования к материалу и качеству обработки цапф.

Недостатки подшипников качения:

1.     высокая чувствительность к ударным и вибрационным нагрузкам вследствие малых площадей контакта между телами качения и беговыми дорожками колец подшипника;

2.     большие габариты в радиальном направлении;

3.     малая надёжность в высокоскоростных приводах.

  1. Муфты

Муфта (от немецкого die Muffe) – устройство для соединения валов, тяг, труб, канатов, кабелей. Следует различать муфты соединительные и муфты приводов машин. Именно последние рассматриваются в курсе деталей машин. Поэтому далее понятием муфта объединяются устройства, предназначенные для передачи вращательного движения между валами или между валом и свободно сидящей на нём деталью (шкивом, звёздочкой, зубчатым колесом и т.п.) без изменения параметров движения. Современное машиностроение располагает большим арсеналом муфт, различающихся по функциональному назначению, принципу действия и конструктивному исполнению.

Назначение муфт:

компенсация неточности сопряжения соединяемых концов валов;

смягчение крутильных ударов и гашение колебаний;

предохранение механизмов от разрушения при действии нештатных нагрузок;

периодическое сцепление и расцепление валов в процессе движения или во время остановки;

передача однонаправленного движения или предотвращение передачи обратного движения от ведомого вала к ведущему;

ограничение параметров передаваемого движения – скорости (частоты вращения ведомого вала) или крутящего момента.

Классификация муфт:

по виду энергии, участвующей в передаче движения – механические, гидравлические, электромагнитные;

по постоянству сцепления соединяемых валов – муфты постоянного соединения (неуправляемые), муфты сцепные, управляемые (соединение и разъединение валов по команде оператора), и автоматические (либо соединение, либо разъединение автоматическое по достижении управляю­щим параметром заданного значения);

по способности демпфирования динамических нагрузок  жёсткие, не способные снижать динамические нагрузки и гасить крутильные колебания, и упругие, сглаживающие вибрации, толчки и удары благодаря наличию упругих элементов и элементов, поглощающих энергию колебаний;

по степени связи валов  неподвижная (глухая), подвижная (компенсирующая), сцепная, свободного хода, предохранительная;

по принципу действия  втулочная, продольно-разъёмная, поперечно-разъёмная, компенсирующая, шарнирная, упругая, фрикционная, кулачковая, зубчатая, с разрушаемым элементом (срезная), с зацеплением (кулачковые и шариковые);

по конструктивным признакам  поперечно-компенсирующая, продольно-компенсирующая, универсально-компенсирующая, шарнирная, упругая (постоянной и переменной жёсткости), конусная, цилиндрическая, дисковая, фрикционная свободного хода, храповая свободного хода.

Муфты постоянного соединения позволяют разъединить ведущий и ведомый валы только после разборки соединения. Наиболее простыми из муфт постоянного соединения являются глухие муфты. Глухой называют такую муфту, которая обеспечивает при соединении валов полное совпадение их геометрических осей. Глухими являются втулочныепродольно-разъёмные и поперечно-разъёмные или фланцевые муфты.

Рис.  16.1. Втулочная муфта.

Втулочная муфта (рис. 16.1) наиболее проста по конструкции и представляет собой втулку, одетую на концы соединяемых валов. Вращающий момент от ведущего вала к ведомому передаётся втулкой через штифты, установленные в отверстия, просверленные диаметрально сквозь втулку и концы валов, через шпонки (как на рис. 16.1), или через шлицы.

Недостатком этой муфты является невозможность разъединения валов без смещения хотя бы одного из них.

Рис. 16.2. Муфта продольно-разъёмная

Продольно-разъёмная муфта (рис. 16.2) состоит из двух полумуфт, стягиваемых при сборке винтами или болтами с гайкой. Разъём между полумуфтами расположен в плоскости, проходящей через общую геометрическую ось обоих соединяемых валов. Усилие затяжки винтов выбирается таким, чтобы обеспечить передачу вращающего момента силами трения, действующими между контактирующими поверхностями валов и полумуфт. Такая муфта позволяет разъединять концы валов, не смещая последние со своего места, и облегчает центровку валов при установке агрегатов на общую раму или фундамент.

  1. Канаты. Классификация и индексация канатов.

 Канаты изготовляют из стальной светлой или оцинкованной проволоки марок В, I или II по ГОСТ 7372–79 диаметром от 0,2 до 3 мм; высокий предел прочности проволоки при растяжении σв≤ 2600 МПа достигают многократным холодным волочением с промежуточной термической и химической обработкой. Однако в грузоподъемных машинах наибольшее применение находят канаты с пределом прочности σв= 1600 ÷ 2000 МПа. Использование проволоки с более низким пределом прочности приводит к увеличению диаметра каната, а с более высоким пределом прочности — к снижению срока службы из-за большей жесткости проволок. Проволоку марки В применяют в особо ответственных случаях, например в устройствах для подъема людей. Для специальных целей канаты изготовляют из проволок изнержавеющей стали.

Канаты

В грузоподъемных машинах применяют преимущественно канаты двойной свивки (рис. 1): проволоки свивают в пряди вокруг центральной проволоки, а затем пряди свивают в канат вокруг сердечника. Число проволок в пряди и число прядей в канате может быть различно. В грузоподъемных машинах применяют главным образом шестипрядные канаты с числом проволок в пряди 19 и 37. При этом получается наиболее рациональное соотношение диаметра прядей и диаметра центрального сердечника и хорошо используется поперечное сечение каната при достаточной его гибкости. Восьмипрядныеканаты используют в кранах и подъемниках, если применяются шкивы трения и барабаны малого диаметра.