Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ананьев Потапов Геология.doc
Скачиваний:
422
Добавлен:
17.05.2015
Размер:
5.87 Mб
Скачать

Глава 34 инженерно-геологические изыскания для строительства зданий и сооружений

Общие положения. Инженерно-геологические изысканияявляются начальным этапом строительства любого объекта и находятся в полной зависимости от вида объекта (промышленное предприя­тие, жилой дом, автомобильная дорога и т. д.). Поэтому изыскания под каждый вид объекта имеют свою специфику, свои особенно­сти, но все изыскания имеют нечто общее, некоторый стандарт.

Результаты инженерно-геологических исследований в виде отчетапоступают в строительную проектную организацию. От­четы должны содержать для инженера-проектировщика материа­лы по основным позициям результатов инженерно-геологических изысканий:

  • оценку в целом пригодности площадки для строительства данного объекта;

  • геологический материал, позволяющий решать все вопросы по основаниям и фундаментам;

  • оценку грунтового основания на восприимчивость возмож­ных динамических воздействий от объекта;

  • наличие геологических процессов и их влияние на устойчи­вость будущего объекта;

  • полную характеристику по подземным водам;

  • все сведения по грунтам, как для выбора несущего основа­ния, так и для производства земляных работ;

  • сведения по влиянию будущего объекта на природную среду.

Проектирование крупных объектов осуществляется по стади­ям:технико-экономическое обоснование (ТЭО), технический проект и рабочие чертежи. Название стадий инженерно-геологи­ческих изысканий соответствует стадиям проектных работ, за исключением стадии ТЭО, где геологические работы получили название рекогносцировочных инженерно-геологических изыска­ний. Следует отметить, что в практике строительства последова­тельность стадий проектирования не всегда соблюдается. Проек­тирование крупных объектов может быть проведено в две стадии, проектирование жилого дома — в одну стадию. В соответствии с этими стадиями проводятся инженерно-геологические изыскания со своими инженерно-геологическими отчетами.

На ранних стадиях проектирования инженерно-геологические изыскания охватывают обширные площади, применяются не 456 очень точные, но сравнительно простые и экономичные техниче­ские средства. По мере перехода к более поздним Стадиям пло­щади изысканий сужаются и применяются более сложные и точ­ные методы геологических работ.

На выделенной под строительство площадке на каждом от­дельном этапе инженерно-геологические изыскания выполняют в определенной последовательности:

  • собирают общие сведения по территории из литературных публикаций и архивных материалов изыскательских организаций; сведения о климате, рельефе, речной сети, населении и т. д.;

  • инженеры-проектировщики совместно с инженером-геоло- гом производят осмотр строительной площадки; определяют сте­пень ее застройки, осматривают ранее построенные здания (соору­жения), дорожную сеть, рельеф, растительность и т.д.; в целом определяют пригодность участка под застройку и вырабатывают техническое задание на изыскания;

  • выполняют инженерно-геологические изыскания; в полевых условиях изучают геологическое строение площадки, гидрогеоло­гию, геологические процессы, при необходимости на грунтах ста­вят опытные работы; отобранные пробы фунтов и подземных вод изучают в лабораториях;

  • по окончанию полевых и лабораторных работ в камеральный период составляют инженерно-геологический отчет, который за­щищают в проектной организации, после чего он становится определяющим документом и используется для проектирования объекта.

Ниже приводится краткое содержание инженерно-геологиче­ских изысканий, которые выполняются под различные строите­льные объекты.

Инженерно-геологические изыскания для строительства промыш­ленных сооружений. Проектирование промышленных сооружений чаще всего выполняют в две стадии. Сначала разрабатывают про­ектное задание, а на его основе в последующем — технический проект и рабочие чертежи. По сложным объектам могут произво­диться дополнительные изыскания, необходимые для доработки и уточнения ранее выполненных изысканий. Иногда по отдель­ным несложным объектам исследования могут выполняться од­новременно для проектного задания и рабочих чертежей.

Каждому этапу проектирования предшествуют свои инженер­но-геологические изыскания: проектному заданию — предварите­льные, рабочим чертежам — детальные.

Промышленное предприятие представляет собой сложный комплекс различных зданий и сооружений. Поэтому параллельно с изысканиями и проектированием основного сооружения вы­

полняют аналогичные работы по линиям связи, ЛЭП, магистра­льным трубопроводам, подъездным и внутризаводским путям ав­томобильных, железных и канатных дорог, по сооружениям водоснабжения, удалению отходов, канализации и т. д.

Предварительные изыскания.В тех случаях, когда это необходи­мо, вначале выполняют инженерно-геологические работы на уров­не технико-экономического доклада (ТЭД). Инженерно-геологи­ческие изыскания в последнее время выполняют на стадии выбора инвестора. Основная цель — выбор строительной площадки. Далее работы проводят по изучению выбранной площадки. В тех случа­ях, когда площадка задана, инженерно-геологические исследова­ния начинают непосредственно на этой площадке. На этом этапе осуществляют работу с целью общей инженерно-геологической оценки выбранной площадки. В состав исследований входят: ин­женерно-геологическая съемка; проходка разведочных выработок и геофизические работы; полевые опыты, работы по фунтам и подземным водам; лабораторные исследования и камеральные ра­боты с составлением инженерно-геологического отчета.

Во многих случаях площадки характеризуются сложными, специфическими условиями. Это требует проведения дополните­льных работ, состав и содержание которых зависят от особенно­стей условий площадок. К таким условиям относят районы сей­смические, заболоченные, техногенно зафязненные, карстовые, оползневые, а также площадки с вечномерзлыми породами, лес­совыми просадочными отложениями и участки, сложенные на­сыпными и намывными фунтами.

Все материалы работ обобщают и представляют в виде инже­нерно-геологического отчета с приложениями обзорной карты района строительства масштаба 1:25 000—1:100 000 с указанием фаниц изучаемой площадки, инженерно-геологической карты и разрезов, колонок разведочных выработок, таблиц показателей пород и подземных вод, фафиков наблюдений, фотофафий при­родных условий. Отчет дает общую инженерно-геологическую оценку площадки с учетом особенностей проектируемых зданий и сооружений.

Детальные изыскания.Эти изыскания чаще всего выполняют применительно к объединенной стадии проектирования — техни­ческий проект и рабочие чертежи. Их целью является детализа­ция и уточнение инженерно-геологических данных, полученных на стадии проектного задания (предварительных исследований) для каждого здания и сооружения. Для проектирования второсте­пенных объектов бывает достаточно материалов предварительных исследований. В целях уточнения иногда дополнительно прохо­дят одну-две буровые скважины.

На этой стадии основным являются разведочные выработки и опытные работы. Разведочные выработки располагают в зависимо­сти от размещения фундаментов — по периметру или по осям зда­ния. Количество выработок зависит от ряда факторов, в том числе от этажности здания и сложности геологического строения пло­щадки. Ориентировочное расстояние между выработками дано в табл. 38.

Таблица 38

Ориентировочные расстояния между выработками, м

Сооружение

Геологические условия

простые

средние

сложные

Одноэтажное

60

30

7-15

Многоэтажное

30

15

7

Глубина разведочных выработок зависит от особенностей и сложности геологического строения. При небольшой глубине за­легания скальных пород выработки должны быть на 0,5—1 м врезаны в эти породы. В случае если строительная площадка сложена более или менее однородной толщей достаточно проч­ных пород (глины, суглинки и т. д.), глубина выработок прини­мается равной полуторной-двойной ширине фундаментов, но не менее 6—8м. При более сложных условиях их глубина доводится до 20—25 м и более.

На участках распространения (водонасыщенных песков, илов и т. д.) скважины должны достигнуть их и на 2—3 м войти в по­роды, которые могут служить надежным основанием. Ориентиро­вочные глубины скважин приведены в табл. 39.

Таблица 39

Ориентировочные глубины скважин, м

Ширина здания, мм

Количество этажей

1

2

3

4

30

3

6

10

16

120

4

10

14

24

Полевые опытные инженерно-геологические работыпроизводят только под наиболее ответственные сооружения. Их целью явля­ется уточнение прочностных и деформативных показателей фун­тов в пределах контура здания. Опытные гидрогеологические ра­боты выполняют для получения окончательных данных для расчетов дренажных сооружений, определения притоков воды в котлованы и др.

По окончанию изысканий этого этапа составляется инженер­но-геологический отчет, дающий исчерпывающие данные по грунтам оснований отдельных зданий и сооружений и агрессив­ности грунтовых вод. В отчете приводятся также рекомендации по проведению мероприятий, обеспечивающих защиту фундамен­тов, подземных сооружений и перечень прочих инженерных ме­роприятий, обеспечивающих устойчивость зданий и сооружений в период их строительства и эксплуатации.

Инженерно-геологические изыскания для градостроительных ра­бот. Проектирование городского и поселкового строительства осуществляется стадийно. В настоящее время оно складывается из проектов: планировки и плана размещения первоочередного строительства; детальной планировки и проекта застройки.

Соответственно этому инженерно-геологические исследования проводят также по стадиям, применительно к каждому виду про­ектирования.

Исследования для проекта планировки и плана размещения пер­воочередного строительства.Инженерно-геологические исследова­ния для проекта планировки городов (поселков) должны дать оценку значительной территории с точки зрения возможности использования ее для строительства. Геологические работы про­водят в сочетании с другими исследованиями и проектными про­работками; экономическими, климатическими, гидрогеологиче­скими, экологическими, санитарно-гигиеническими и т. д.

По изучаемой территории должны быть получены сведения о рельефе, гидрологии, климате, почвах, растительности, геологи­ческом строении, гидрогеологии, природных геологических явле­ниях и инженерно-геологических процессах (оползнях, карсте, просадках, сейсмике и т. д.), составе и свойствах грунтов.

Инженерно-геологические изыскания проводят в три периода: подготовительный, полевой и камеральный. Инженерно-геологи­ческий отчет служит основанием для составления проекта плани­ровки и плана размещения первоочередного городского и посел­кового строительства.

Исследования для проекта детальной планировки.Проект дета­льной планировки существующего города (поселка) включает в себя архитектурно-планировочную и техническую организацию районов застройки первой очереди, устанавливает последователь­ность застройки, решает вопросы благоустройства, содержит про­екты детальной планировки и застройки отдельных городских районов.

Основой инженерно-геологических исследований для проекта детальной планировки являются материалы, полученные при изысканиях для проекта планировки. Аналогичны состав и со- 460 держание работ и их последовательность (подготовительные ра­боты, полевой период, камеральная обработка материалов).

На этой стадии проводят более детальное изучение геологиче­ской обстановки местности и свойств грунтов. Для этого закла­дывают дополнительные буровые скважины по створам вдоль но­вых или реконструируемых улиц, в местах специальных сооружений. Глубина скважин под сооружением в большинстве случаев достигает 8—10 м. При наличии слабых пород заклады­ваются шурфы с отбором 2—3 образцов для проведения полного комплекса лабораторных исследований.

Исследования для проекта застройки.Проект застройки в пре­делах существующего города предусматривает строительство от­дельных жилых домов (микрорайонов), кварталов, улиц и площа­дей. Проектирование проводят в две стадии — проектного задания и рабочих чертежей. Перед каждой стадией выполняют инженер­но-геологические работы.

Изыскания для проектного задания освещают геологические и гидрогеологические условия всей изучаемой площадки, характе­ризуют инженерно-геологические свойства грунтов. В случае если для данной площадки ранее проводились изыскания для проекта планировки и проекта детальной планировки, то этих материалов вполне достаточно, чтобы не проводить новых исследований на стадии проектного задания застройки. При отсутствии каких-ли­бо инженерно-геологических исследований изыскания проводят в составе и объеме, как это было показано выше для проекта пла­нировки и проекта детальной планировки.

На стадии рабочих чертежей инженерно-геологические мате­риалы могут быть оформлены в одном отчете.

При составлении рабочих чертежей возможны случаи назна­чения дополнительных исследований. Это связано, главным об­разом, с изменениями в размещении зданий или проверкой име­ющихся геологических материалов.

Инженерно-геологические изыскания для отдельных зданий.Ин­женерно-геологические работы под застройку отдельных зданий проводят, как правило, одновременно для проектного задания и рабочих чертежей, т. е. фактически в одну стадию. Изучению подвергается ограниченная площадка. Объем проводимых на ней работ зависит от сложности инженерно-геологических условий, которые подразделяют на три категории:

  1. категория — участки с простыми геологическими условия­ми; слои залегают горизонтально; несущая способность грунтов не вызывает сомнения; грунтовые воды под фундаментами зале­гают ниже активной зоны; мощность насыпных грунтов не пре­вышает 2м;

  2. категория — участки средней геологической сложности; толща сложена из 4—5 литологических различных слоев в виде складок; грунтовые воды залегают в пределах активной зоны; мощность насыпных грунтов составляет 3—4 м;

  3. категория — участки геологически сложные; расположены в пределах пересеченного рельефа; толща многослойная; залега­ние слоев складчатое; нарушенное; грунтовые воды залегают вы­ше подошвы фундаментов; активная зона содержит грунты типа ила, торфа; мощность насыпных грунтов превышает 4 м; на уча­стке развиты природные геологические процессы и явления.

Инженерно-геологические работы выполняют в обычном по­рядке. Отличие работ заключается только в том, что на площадках будущих высотных зданий (более 9 этажей) обязательно проводит­ся изучение грунтов опытными нагрузками. Выполненные работы представляют в виде заключения об инженерно-геологических условиях площадки. При написании заключения большое внима­ние уделяют и обобщению опыта строительства эксплуатации зда­ний на соседних участках в сходных геологических условиях.

Инженерно-геологические изысканияв связи с надстройкой зда­ний, реконструкцией, перепрофилированием, изменением этаж­ности зданий. В этом случае инженерно-геологические работы проводят для разработки проектов частичной или полной рекон­струкции зданий. Такие работы часто выполняют для районов городов со старой плотной застройкой в связи с увеличением этажности зданий или освоением подземных пространств.

Все работы проводят в один этап, не разделяя их на стадии проектного задания и рабочих чертежей. Строители изучают кон­струкцию здания с целью выявления возможности надстройки дополнительных этажей, а инженеры-геологи занимаются изуче­нием грунтов оснований с целью создания новой подземной час­ти здания. Если сохранился проект здания и материалы прежних инженерно-геологических изысканий, то объем работ может быть минимальным, хотя это достаточно редкие случаи. Всегда необ­ходимо отобрать монолиты грунта для лабораторных анализов и проверить состояние здания. Если эти материалы не сохрани­лись, то необходимо выполнить полный объем инженерно-геоло­гических работ.

В состав полного объема инженерно-геологических исследова­ний входит изучение геологических и гидрогеологических мате­риалов по данной территории или для соседних участков, изуче­ние геолого-литологического строения площадки, грунтовых вод, инженерно-геологических процессов и природных геологических явлений. С помощью шурфов определяют глубину заложения и 462

состояние фундаментов, стен подвалов, гидроизоляции, конст­рукцию дренажей и т. д.

Для решения всех геологических вопросов используют разве­дочные выработки. Количество выработок и их глубину устанавли­вают в зависимости от размеров здания, а также сложности геоло­гического строения участка. Размер здания оценивают числом секций (секция — часть здания длиной не более 30 м). При 1 — 2 секциях бурят 4 скважины, при 3 — 4 — (4—6) скважин, бо­лее 4 — 8скважин. Число шурфов устанавливают также количест­вом секций: 1 секция — 3 шурфа; 2 секции — 5; 3 — 4 секции — 7; более 4 секций — 10 шурфов. Указанное количество выработок мо­жет быть уменьшено для участков с простым геологическим строе­нием. Глубину скважиныhопределяют по формуле

Л = £Л! +КВ + с,

где hi— глубина заложения фундамента, м;К— глубина актив­ной зоны основания, м;В— максимальная ширина подошвы фундамента, м;с— постоянная величина, равная для зданий до трех этажей —2м, свыше трех этажей — 3 м.

Буровые скважины располагают вокруг здания, а шурфы по характерным его сечениям — около фундаментов. Глубина шур­фов должна быть ниже подошвы фундаментов (рис. 189). Моно­литы отбирают с глубины заложения фундаментов и ниже через каждые 0,5 м проходки и в зависимости от смены слоя грун­та — до нижней границы активной зоны основания.

г^-1

При оценке грунтов как основания следует помнить, что под воздействием веса здания грунты уже в какой-то мере уплотнены и приобрели повышенную несущую способность. Такое состоя­ние грунты приобретают для песков примерно через1год после окончания строительства, для супесей и суглинков — через 1,5—2 года и для глин — через 2—3 года. Вывод о том, что грунты уже имеют повышенную несущую способность, получают на основе сравнения характеристик образцов грунтов, взятых под подошвой фундаментов и вне контура здания.

Рис. 189. Расположение шурфа по отношению к фундаменту при проведении инженерно-геологического обследования:

1— шурф;2 —фундамент;3— место отбора монолита грунта

Удовлетворительное состояние здания и необходимая уплот­ненность грунтов позволяют произвести надстройку здания без уширения существующих фундаментов. Это значит, что на грун­ты основания можно допустить увеличение давления по отноше­нию к фактическому на 25—35 %, а при особо благоприятных условиях даже на 45—50 %.

Все исследования, выполненные в связи с надстройкой зда­ния, оформляют в виде инженерно-геологического заключения. Освоение подземного пространства под зданием требует боль­шого внимания и во многом излагается ниже.

Инженерно-геологические изыскания для строительства подзем­ных сооружений. К числу подземных сооружений, возводимых с поверхности, а затем перекрытых относят подземные резервуары, очистные канализационные сооружения, станции перекачки, а также различные объекты специального назначения. В последние годы в городском строительстве стали создавать подземные соо­ружения «горными» способами, что очень специфично.

Особенностью указанных «обычных» подземных сооружений является большое заглубление. Их фундаменты передают на грунт оснований небольшие давления, которые иногда даже меньше, чем давление от собственного веса грунта, вынутого при отрывке котлована. В связи с этим при лабораторных исследованиях во­прос прочности грунтов не является главным. Значительно боль­шее значение имеет устойчивость грунтов в откосах котлованов, особенно при наличии подземных вод, а также боковое давление грунтов на сооружение после осуществления засыпки пространств между стенками сооружений и откосами котлованов.

Все необходимые данные о геолого-литологическом строении участков, предназначенных под застройку, гидрогеологии, инже­нерно-геологических процессах дают буровые скважины. Глубина скважин определяется условием — забой скважины должен нахо­диться на 5—6 м ниже проектируемого основания подземных соо­ружений. В том случае когда в этих пределах могут быть встречены неустойчивые породы, скважину углубляют до нижележащих устойчивых пород. Из скважины извлекают монолиты грунтов для лабораторных исследований, среди которых наибольшее значение имеют данные о сопротивлении грунтов сдвигу.

Большая глубина заложения сооружения в большинстве слу­чаев приводит к контакту с подземными водами, поэтому изуча­ют режим, состав и агрессивность подземных вод. Одновременно решаются вопросы водоотлива, если подземные воды препятству­ют производству работ, а также конструкции дренажей на период эксплуатации сооружений. Результаты исследований оформляют в виде обычного инженерно-геологического отчета. Все эти работы 464 резко усложняются при создании новой подземной части уже су­ществующего здания. Здесь необходимо разрабатывать специаль­ную программу изысканий с привлечением методов «горной ин­женерии».

Инженерно-геологические изыскания для гидротехнического стро­ительства (плотины, водохранилища и др.) являются наиболее сложными из всех видов изысканий под строительные объекты.

Состав и объем инженерно-геологических изысканий опреде­ляется тремя основными факторами:

  • характером проектируемого сооружения;

  • стадией проектирования;

  • сложностью геологических условий района строительства.

По своему характеру гидротехнические сооружения разнооб­разны. Для целей гидроэнергетики и водоснабжения гидротехни­ческие сооружения могут быть крупными и сложными объекта­ми, в виде плотин, перекрывающих мощные реки, например Цимлянская плотина на р. Дон, и сравнительно малыми и про­стыми сооружениями в виде невысоких (менее 10м) земляных плотин с небольшими чашами водохранилищ. Последние наибо­лее часто встречаются в сельских местностях, при поселковом строительстве, при решении вопросов обеспечения водой отдель­ных промышленных объектов.

В основе изыскательских работ для гидротехнического строите­льства лежит их стадийность. Для наиболее простых сооружений, например низкой земляной плотины и маленького водохранили­ща, возможно одностадийное проектирование с составлением тех­но-рабочего проекта. Для сложных сооружений предусматривают­ся несколько стадий проектирования.

Большое влияние на инженерно-геологические изыскания оказывает сложность геологического строения. Условия могут быть простые, сложные и весьма сложные. При простых геологи­ческих условиях объект строится на естественном основании, на­фузки на грунты не ограничиваются. Сложные условия требуют улучшения свойств фунтов и офаничения нафузок. Весьма сложные геологические условия свойственны горным и сейсми­ческим районам, участкам развития карста, многолетней мерзло­ты. Строительство в таких районах требует проведения сложных мероприятий по улучшению состояния и свойств фунтов, приня­тия специальных конструктивных решений.

В комплекс инженерно-геологических изысканий на всех ста­диях работ входят инженерно-геологическая съемка и разведоч­ные работы. Это позволяет решать общие геологические вопросы строения местности (долины реки, участка балки, оврага и т. д.). На более поздних этапах изысканий на первом месте стоят рабо­ты по изучению характеристик и свойств грунтов, а также анализ гидрогеологических условий района (участка). При крупном гид­ротехническом строительстве возможно проведение опытных ра­бот (по фильтрации, определению несущей способности грунтов и т. д.) и опытного строительства (опытный намыв дамб, опыт­ные дренажи и т. д.).

При изысканиях под гидротехнические объекты важнейшее значение имеют работы по гидрогеологии. В районе плотины изучаются условия фильтрации. Особое внимание уделяется по­левым работам (опытные откачки, нагнетания, наливы) и наблю­дениям за режимом подземных вод. При оценке потерь воды из водохранилища кроме фильтрации следует учитывать возмож­ность ее ухода через расположенные вблизи депрессии рельефа, подземные выработки, карстовые пустоты, трещины скальных массивов. Определяются возможность выщелачивания и механи­ческой суффозии фунтов; выходы напорных вод; вероятность развития оползней на склонах и в местах примыкания плотины к берегам; характер подтопления окружающей водохранилище территории, особенно населенных пунктов и промышленных объектов. Особое внимание должно уделяться изменению геоло­гических и гидрогеологических, климатических, геоэкологических условий в зоне затопления водохранилищ.

Во всех случаях инженерно-геологических работ для проекти­рования гидротехнических сооружений производят поиск и раз­ведку строительных материалов. Подсчет запасов выполняют из расчета превышения потребностей в 2—3 раза. В основном ведут поиски материала для отсыпки тела плотин. В период эксплуатации земляных плотин и водохранилищ важное значение имеют наблю­дения за поведением фунтового тела плотины (осадки, сдвиги).

Необходимо отметить, что наибольшую сложность представля­ет собой строительство плотин и водохранилищ в районах много­летней мерзлоты и развития карста. Инженерно-геологические изыскания в этих случаях имеют ряд специфических особенно­стей. В районах многолетней мерзлоты производят мерзлотную съемку, замеры температур фунтов, специальные определения свойств и водопроницаемости фунтов. В процессе изучения кар­стовых районов устанавливают распросфанение и происхождение карстовых форм, закономерности развития, условия растворения фунтов фильфационным потоком и скорость этого процесса.

Инженерно-геологические изыскания для линейного строительст­ва. Создание крупных промышленных сооружений, городов (по­селков) всегда сопровождается сфоительством различных объектов линейного характера, которые могут быть наземными (железные и автомобильные дороги), подземными (нефте- и газопроводы), воз­душными (линии электропередач, подвесные канатные дороги).466

Для каждого такого объекта характерны свои и вполне определенные особенности в проведении инженерно-геологических изысканий.

Одной из особенностей изысканий под линейное строительст­во является большая протяженность при малой ширине полосы изысканий. При изысканиях под такие объекты инженер-геолог практически сталкивается со всеми разделами инженерной геоло­гии (общая геология, подземные воды, геодинамика поверхности земли и многое другое).

Инженерно-геологические изыскания для каждого вида ли­нейных объектов выполняют по определенным нормативам, ко­торые учитывают специфику объектов. Сопутствующие линейным объектам здания и сооружения проектируют в соответствии с до­кументами для промышленно-гражданского строительства.

Как проводятся инженерно-геологические изыскания под ли­нейные сооружения, в качестве примера покажем на строитель­стве трубопроводов.

Трубопроводы предназначаются для транспортировки различ­ных жидкостей и газов. Большая протяженность, пересечение различных природных препятствий (горы, реки, болота и т. д.) заставляют проектировать трубопроводы подземные (в траншеях), подводные (на дне водоемов) и надземные (на опорах). По своей значимости трубопроводы разделяют на магистральные, ответвле­ния и разводящую сеть.

Вдоль трубопроводов располагаются объекты обслужива­ния — насосные, водонапорные башни, резервуары, жилые дома и т. д. Инженерно-геологические работы под эти здания и соору­жения проводят такие же, как для промышленного и городского строительства. При инженерно-геологических изысканиях исхо­дят из того, что трубопроводы характеризуются незначительной удельной нагрузкой на грунты оснований (не более 0,02 МПа), но отличаются высокой чувствительностью к осевым перемеще­ниям с повреждением стыковых соединений.

Для проектирования трубопроводов необходимо знать проч­ность грунтов оснований, характер грунта, который пойдет для за­сыпки траншей (или создания насыпей), рельеф местности, осо­бенности строения речных долин и их эрозионную деятельность, глубину промерзания грунтов, сейсмичность, блуждающие элект­рические токи, наличие грунтовых вод и их агрессивность, харак­тер берегов морей, озер и водохранилищ, а также процессы и при­родные геологические явления, которые могут отрицательно сказаться на устойчивости трубопроводов и затруднить работу по их укладке (оползни, карст, просадки, овраги, сели, осыпи и пр.).

Инженерно-геологические работы трасс трубопроводов прово­дят в две стадии: предварительные для обоснования проектного

задания и детальные для рабочих чертежей. Иногда при сложных объектах перед предварительными исследованиями проводят ре­когносцировочные работы с целью технико-экономического обо­снования целесообразности строительства и поиска инвестиций.

Предварительные инженерно-геологические работы выполня­ют с целью обоснования выбора варианта трассы трубопровода. Намечают ряд вариантов трасс. Каждую трассу изучают в полосе шириной до 500 м. Особое внимание обращают на наиболее не­благоприятные участки (оползни, карст и т. д.), коррозионную акгивность, агрессивность грунтовых вод, выявление блуждающих токов. На этом этапе работ большое значение имеет аэрогеологи- ческое обследование и аэрофотосъемка местности.

В инженерно-геологическом отчете дается сравнительная ин­женерно-геологическая характеристика всех вариантов трасс тру­бопроводов с представлением инженерно-геологических карт и разрезов. Рекомендуется наиболее благоприятный в инженер­но-геологическом отношении вариант трассы.

Детальные инженерно-геологические работы производят на окончательно выбранном варианте трассы. К материалам, полу­ченным на предварительном этапе, добавляют новые исследова­ния, в том числе анализы коррозионной активности грунтов и агрессивность грунтовых вод.

Разведочные выработки выполняют в основном в виде буро­вых скважин. На каждый километр задают в среднем две сква­жины. Глубина выработок назначается с учетом возможной глу­бины заложения трубопроводов и глубины промерзания грунтов. Чаще всего это 3—5 м, а на болотах и переходах через водотоки 1 — 15 м. При необходимости из скважины отбирают образцы грунтов и пробы подземных вод.

Для выявления границ скальных, илистых или торфянистых грунтов закладывают дополнительные выработки. То же самое де­лают на участках переходов через реки, растущие овраги, большие ущелья.

При пересечении трассой трубопровода районов со сложными инженерно-геологическими условиями к обычным исследованиям добавляют специальные работы, значительно увеличивая при этом количество разведочных выработок. К таким районам отно­сят оползневые и карстовые участки, многолетнюю мерзлоту, сейсмические территории, площади с развитием лессовых проса­дочных грунтов, болота, засоленные грунты, участки с горным рельефом и др. Так, в районах развития лессовых просадочных грунтов дополнительно следует установить тип и толщину зоны просадочных пород; на заболоченных территориях изучают усло­вия формирования болот, устанавливают их тип, строение и со­став; в карстовых районах исследуют морфологию, возраст и дру- 468 гие особенности карста, выделяя при этом участки, пригодные и непригодные под строительство, а также пригодные после прове­дения специальных мероприятий. В районах вечной мерзлоты устанавливают тип мерзлоты (сплошная, слоистая), мощность мерзлых пород, склонность к пучинистости деятельного слоя, на­личие наледей. В горных районах особое внимание уделяют воз­никновению селей, оползней, осыпей, обвалов, снежных лавин и выявляют возможное их воздействие на трубопроводы.

Детальные исследования оформляются в виде инженерно-гео­логического отчета, который дает основание для разработки ра­бочих чертежей зданий и сооружений.

Некоторые особенности инженерно-геологических изысканий на техногенно загрязненных территориях.Под техногенно загрязнен­ными территориями понимаются территории, подвергшиеся изме­нениям в результате антропогенных воздействий разного рода, происхождения, интенсивности и продолжительности. Внутри этих территорий происходят значительные процессы в абиотиче­ской составляющей антропогенных экосистем, прежде всего, в го­родах, населенных пунктах, промышленных зонах. Важнейшим объектом изучения являются в первую очередь техногенные грун­ты, а также инициированные техногенезом геоэкологические про­цессы, зачастую весьма негативного характера и отрицательно ска­зывающиеся на строительных объектах. Техногенно загрязненные территории с изменениями в принципах городского строительства, а именно, уплотнения застройки, повышения этажности, освоения подземного пространства, все больше становятся предметом инже­нерно-геологических изысканий. К настоящему времени пока не создано специальных методологий, хотя СНиП 11.02—96 опреде­ляют принципы исследований техногенных грунтов (см. раздел II, гл.10, И).

Для строительного освоения техногенно загрязненных террито­рий необходимо проводить обязательное их санирование— комп­лекс работ по специальному проекту и с применением разработан­ной оптимальной технологии по восстановлению «нормальных» (природных) свойств грунтов, вод и рекультивации почв и биоты на объекте (территории или акватории) в целью их последующего использования как полноценного компонента территории с после­довательным освоением («лечением») всей территории акватории с прилегающими зонами.

В практике изысканий на техногенно загрязненных террито­риях необходимо комплексирование методов, способов, оборудо­вания и подходов к интеграции из «арсеналов» инженерно-геоло­гических и инженерно-экологических изысканий. Это одна из насущных интенсивно разрабатывающихся проблем инженерной геологии, геоэкологии и экологии.