
- •1. Становление теории информации
- •2. Место теории информации в рамках других наук
- •3. Виды информации и сигналов
- •4. Система связи
- •5. Дискретный источник сообщений.
- •6. Энтропия источника сообщений
- •7. Свойства энтропии
- •8. Семантическая мера информации
- •9. Прагматическая мера информации
- •10. Качество информации
- •11. Способы представления информации для ввода в компьютер
- •12. Двоичное кодирование числовой и текстовой информации
- •13. Двоичное кодирование графической и звуковой информации
- •14. Канал связи без шума
- •15. Канал связи с двумя входами и двумя выходами
- •16. Теорема Шеннона о пропускной способности канала связи
- •17. Основная теорема теории информации
- •18. Помехозащитное кодирование
- •19. Простейшие алгоритмы сжатия информации
- •20. Сжатие информации с потерями
- •21. Особенности изображений при использовании алгоритмов сжатия
- •22. Классы изображений, предназначенных для сжатия
- •23. Классы приложений для сжатия изображений
- •24. Нетрадиционные классы приложений для сжатия изображений
- •25. Требования приложений к алгоритмам компрессии
- •26. Сравнение алгоритмов компрессии
- •27. Критерии сравнения алгоритмов компрессии
- •28. Алгоритм сжатия rle
- •29. Алгоритм сжатия lzw
- •30. Алгоритм сжатия jpeg
28. Алгоритм сжатия rle
Кодирование длин серий (англ. Run-length encoding, RLE) или Кодирование повторов — простой алгоритм сжатия данных, который оперирует сериями данных, то есть последовательностями, в которых один и тот же символ встречается несколько раз подряд. При кодировании строка одинаковых символов, составляющих серию, заменяется строкой, которая содержит сам повторяющийся символ и количество его повторов.
Характеристики алгоритма RLE:
Коэффициенты компрессии: Первый вариант: 32, 2, 0,5. Второй вариант: 64, 3, 128/129. (Лучший, средний, худший коэффициенты). Класс изображений: Ориентирован алгоритм на изображения с небольшим количеством цветов: деловую и научную графику. Симметричность: Примерно единица.
Характерные особенности: К положительным сторонам алгоритма, пожалуй, можно отнести только то, что он не требует дополнительной памяти при архивации и разархивации, а также быстро работает. Интересная особенность группового кодирования состоит в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.
Первый вариант алгоритма
Данный алгоритм необычайно прост в реализации. Групповое кодирование — от английского Run Length Encoding (RLE) — один из самых старых и самых простых алгоритмов архивации графики. Изображение в нем (как и в нескольких алгоритмах, описанных ниже) вытягивается в цепочку байт по строкам растра. Само сжатие в RLE происходит за счет того, что в исходном изображении встречаются цепочки одинаковых байт. Замена их на пары <счетчик повторений, значение> уменьшает избыточность данных.
Алгоритм рассчитан на деловую графику — изображения с большими областями повторяющегося цвета. Ситуация, когда файл увеличивается, для этого простого алгоритма не так уж редка. Ее можно легко получить, применяя групповое кодирование к обработанным цветным фотографиям. Для того чтобы увеличить изображение в два раза, его надо применить к изображению, в котором значения всех пикселов больше двоичного 11000000 и подряд попарно не повторяются.
Второй вариант алгоритма
Второй вариант этого алгоритма имеет больший максимальный коэффициент архивации и меньше увеличивает в размерах исходный файл.
29. Алгоритм сжатия lzw
Название алгоритм получил по первым буквам фамилий его разработчиков — Lempel, Ziv и Welch.
LZW-алгоритм основан на идее расширения алфавита, что позволяет использовать дополнительные символы для представления строк обычных символов. Используя, например, вместо 8-битовых ASCII-кодов 9-битовые, вы получаете дополнительные 256 символов. Работа компрессора сводится к построению таблицы, состоящей из строк и соответствующих им кодов. Алгоритм сжатия сводится к следующему: программа прочитывает очередной символ и добавляет его к строке. Если строка уже находится в таблице, чтение продолжается, если нет, данная строка добавляется к таблице строк. Чем больше будет повторяющихся строк, тем сильнее будут сжаты данные. Возвращаясь к примеру с телефоном, можно, проведя весьма упрощенную аналогию, сказать, что, сжимая запись 233 34 44 по LZW-методу, мы придем к введению новых строк — 333 и 444 и, выражая их дополнительными символами, сможем уменьшить длину записи.
Характеристики алгоритма LZW: Коэффициенты компрессии: Примерно 1000, 4, 5/7 (Лучший, средний, худший коэффициенты). Сжатие в 1000 раз достигается только на одноцветных изображениях размером кратным примерно 7 Мб. Класс изображений: Ориентирован LZW на 8-битные изображения, построенные на компьютере. Сжимает за счет одинаковых подцепочек в потоке. Симметричность: Почти симметричен, при условии оптимальной реализации операции поиска строки в таблице.
Характерные особенности: Ситуация, когда алгоритм увеличивает изображение, встречается крайне редко. LZW универсален — именно его варианты используются в обычных архиваторах.
Процесс сжатия выглядит достаточно просто. Мы считываем последовательно символы входного потока и проверяем, есть ли в созданной нами таблице строк такая строка. Если строка есть, то мы считываем следующий символ, а если строки нет, то мы заносим в поток код для предыдущей найденной строки, заносим строку в таблицу и начинаем поиск снова.
Особенность LZW заключается в том, что для декомпрессии не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.