Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фізика / Лекції / Лекції з фізики (2 частина).doc
Скачиваний:
95
Добавлен:
17.05.2015
Размер:
8.89 Mб
Скачать

Тема 6. Електромагнетні хвилі

  1. Природа електромагнетних хвиль.

  2. Хвильові рівняння електромагнетних хвиль.

  3. Енергія електромагнетних хвиль. Вектор Пойнтінга.

1. Природа електромагнетних хвиль

Існуванняелектромагнетних хвиль – змінного електромагнетного поля, яке поширюється в просторі з кінцевою швидкістю, – випливає з рівнянь Максвелла. Рівняння Максвелла сформульовані ще в 1865 р. на основі узагальнення емпіричних законів електричних і магнетних явищ і розвитку ідеї Фарадея. Вирішальну роль для підтвердження теорії Максвелла зіграли досліди Герца (1888), які довели, що електричні й магнетні поля дійсно поширюються у вигляді хвиль, властивості яких повністю описується рівняннями Максвелла. В інтегральній формі рівняння Максвелла мають вигляд:

(1)

(2)

(3)

(4)

З цих рівнянь можна зробити кілька важливих висновків:

  • змінне магнетне поле є причиною виникнення в просторі вихрового електричного поля (1);

  • причиною виникнення статичного електричного поля є наявність у просторі статичних електричних зарядів (2);

  • струм провідності і струм зміщенняє причиною виникнення в просторі вихрового магнетного поля (3);

  • магнетних зарядів в природі не існує (4).

Джерелом електромагнетних хвиль може бути будь-який електричний коливальний контур або провідник, по якому тече змінний електричний струм, оскільки для утворення електромагнетних хвиль необхідно створити в просторі змінне електричне поле (струм зміщення) (3), або відповідно змінне магнетне поле (1). Випромінююча здатність джерела електромагнетних хвиль визначається його формою, розмірами і частотою коливань. Щоб випромінювання було помітним, необхідно збільшити об’єм простору, у якому створюється змінне електромагнет-не поле. Тому для одержання електромагнетних хвиль непридатні закриті коливальні контури, так-як в них електричне поле зосереджене між обкладками конденсатора, а магнетне – усередині котушки індуктивності.

Герц у своїх дослідах, зменшуючи число витків котушки і площу пластин конденсатора, а також розсовуючи їх (рис. 1,а, б), здійснив перехід від закритого коливального контуру до відкритого коливального контуру (вібратора Герца), який складається з двох стрижнів, розділених іскровим проміжком(рис. 1, в). Якщо в закритомуколивальному контурі змінне електричне поле зосереджене усередині конденсатора (рис. 1, а), то у відкритому –воно заповнює навколишній простір(рис. 1,в), що істотнопідвищує інтенсивність електромагнетного випромінювання.

Рис. 1 Рис. 2

Коливання в такій системі підтримуються за рахунок джерела е.р.с., увімкненого до обкладок конденсатора, а іскровий проміжок застосовується для того, щоб збільшити різницю потенціалів, до якої в початковий момент часу заряджаються обкладки конденсатора.

Для утворення електромагнетних хвиль вібратор Герца В під’єднували до індуктора I (рис. 2). Коли напруга на іскровому проміжку досягала пробивного значення, виникала іскра, яка замикала обидві половини вібратора, і у вібраторі виникали вільні затухаючі коливання. При зникненні іскри контур розмикався і коливання припинялися. Потім індуктор знову заряджав конденсатор, виникала іскра й у контурі знову спостерігалися коливання, і т.д. Для реєстрації електромагнетних хвиль Герц використовував інший вібратор, який був названий резонатором Р, що мав таку ж частоту власних коливань, як і випромінюючий вібратор. Коли електромагнетні хвилі досягали резонатора, то в його зазорі виникала електрична іскра.

Для одержання незатухаючих коливань необхідно створити автоколивальну систему, яка б забезпечувала подачу енергії з частотою, рівною частоті власних коливань контуру. Тому в 20-х роках минулого сторіччя перейшли до генерування електромаг-нітних хвиль за допомогою електронних ламп. Лампові генератори дозволяють одержувати коливання заданої (практично будь-якої) потужності і синусоїдальної форми.

Електромагнетні хвилі, які мають досить широкий діапазон частот (або довжин хвиль λ = c/υ, де с - швидкість електромагнетних хвиль у вакуумі), відрізняються одна від одної за способам їх генерації і реєстрації, а також за своїми властивостями. Тому електромагнетні хвилі поділяються на кілька видів: радіохвилі, світлові хвилі, рентгенівське і γ-випромінювання (табл. 1). Слід зазначити, що межі між різними видами електромагнетних хвиль досить умовні.

Таблиця 1.

Вид випромінювання

Довжина хвилі, м

Частота, Гц

Джерело випромінювання

Радіохвилі

Світлові хвилі:

- інфрачервоне випромінювання.

- видиме світло

- ультрафіолетове випромінювання

Рентгенівське випромінювання

Гамма-випромінювання

103 ─ 10-4

5·10-4 ─ 8·10-7

8·10-7─4·10-7

4·10-7 ─ 10-9

2·10-9 ─ 6·10-12

< 6·10-12

3·105 ─ 3·1012

6·1011 ─ 3,7·1014

3,7·1014─7,5·1014

7,5·1014 ─ 3·1017

1,5·1017─5·1019

> 5·1019

Коливальний контур

Вібратор Герца

Ламповий генератор

Лампи

Нагріті тіла

Лазери

Рентгенівські трубки

Радіоактивність

Космічне випромінювання

Наслідком теорії Максвелла є поперечний характер електромагнетних хвиль: вектори Ε і Η напруженостей електричного і магнетного полів хвилі взаємно перпендикулярні (рис. 3) і лежать у площині, яка є перпендикулярною до вектора υ швидкості поширення хвилі, причому вектори Ε, Η і υ утворюють правогвинтову систему.

Рис. 3

З рівнянь Максвелла випливає також те, що в електромагнетній хвилі вектори Ε і Η завжди коливаються в однакових фазах (рис. 3), причому миттєві значення Е і Н у будь-якій точці зв'язані співвідношенням

(5)

Рівняння коливань векторів ЕіН, які задовольняють плоским монохроматичним електромагнетним хвилям (рис.3) мають вигляд

(6)

де Е0і Н0─ відповідні амплітуди електричного і магнетного полів хвилі; ω ─ колова, або циклічна частота;k─ хвильове число (k= ω/υ).