- •Вероятностные методы расчета
- •Строительных конструкций
- •(Конспект лекций)
- •Литература
- •Задачи теории надежности строительных конструкций. Понятие надежности и ее свойства
- •Основные положения теории вероятносТей, важные для решения задач теории надежности строительных конструкций
- •Характеристики распределения случайных величин
- •3.1 Одномерная случайная величина
- •3.2 Случайная векторная величина двух измерений
- •3.3 Числовые характеристики распределения системы двух случайных величин
3.2 Случайная векторная величина двух измерений
На практике решаются задачи, в которых результат опыта описывается не одной с.в., а двумя или более с.в., образующими систему. При этом свойства системы нескольких с.в. могут включать и взаимные связи (зависимости) между ними.
Е
сли
с.в.XиYпринимают дискретные значенияxi,yjи каждой паре значений (xi,yj)
соответствует определенная вероятностьpij,
то можно составить таблицу распределения
вероятностей дискретной двумерной с.в.
Очевидно
.
Значение функции Р(x,y)равно вероятности обнаружить с.в.Х<хи с.в.Y<y, т.е.
P(x,y)=Prob(X<x,Y<y).
Свойства функции распределения Р(x,y):
1) Р(х,y) - неубывающая функция своих аргументов,
т.е. при х2>x1 P(x2,y)>P(x1,y)или приy2>y1 P(x,y2)>P(x,y1);
2) P(x,-)=P(-,y)=P(-,-)=0;
3) P(x,+)=P(x), P(+,y)=P(y)- если один из аргументов равен +, то функция распределенияР(х,y)превращается в функцию распределения другой с.в.;
4) P(+,+)=1.
Плотность
распределения системы двух с.в. (вторая
смешанная производная P(x,y)по
и затем по
).
(25.3)(15.3)
или в общем виде
,
.
Геометрически p(x,y)можно представить поверхностью (поверхность распределения - поОХиOYоткладываются значения с.в.X и Y, по Z- вероятность их появления, см. рис. ).
Из (25) следует
(26.3)(17.3).
Вероятность обнаружить двумерную с.в. (X,Y)в областиD:
Prob((X,Y)D)=
(27.3)=(16.3).
Вероятность обнаружить точку Мс координатамих1,х2,...хnвn-мерном объемеV:
Prob(MV)=
(27.3)
Далее, аналогично (18)
(28.3),
т.е. геометрически объем под поверхностью распределения равен 1.
В общем виде имеем n-кратный интеграл
(28.3).
Е
сли
известен закон распределениясистемы
двух случайных величин
p(x,y),
то можно определить законы распределения
отдельных величин, входящих в систему:
(29.3).
То же, в общем виде:
(29.3).
Но для того, чтобы по заданным законам распределения отдельных с.в., входящих в систему, определить законы распределения системы с.в., надо знать зависимость между величинами, входящими в систему.
У
словный
закон распределения с.в.Х,
входящей в систему (X,Y)
- закон ее распределения, вычисленный
при условии, что другая с.в. Y
приняла
определенное значение. Условный закон
распределения можно задавать функцией
P(x/y)
и плотностью p(x/y)
распределения.
Геометрически
функция плотности распределения p(x/y)
представляет собой сечение поверхности
распределения при y=const.
Сечения поверхности распределения
плоскостями x=const
и y=const
дают соответственно условные плотности
распределения p(y/x)
величины Y
при определенных значениях x
и условные плотности распределения
p(x/y)
величины X
при определенных значениях y.
Если X
и Y
- зависимые с.в., то кривые плотности
распределения p(y/x)
изменяются при изменении x,
а кривые плотности распределения p(x/y)
изменяются при изменении y.
М.о. этих кривых при таких изменениях
образуют линии регрессии 1 и 2. В случае
независимости X
и Y
линии регрессии представляют собой
прямые
и
,
параллельные осям координат. При наличии
функциональной связи (а не стохастической)
междуX
и Y
обе линии регрессии сливаются в одну -
y=y(x),
при этом поверхность плотности
распределения может быть заменена
кривой плотности распределения X
или Y
вдоль линии y=y(x).
С учетом вышесказанного плотность распределения системы двух с.в. равна плотности распределения одной из них, умноженной на условную плотность распределения другой величины, вычисленную при условии, что первая величина приняла заданное значение:
p(x,y)=p(x)p(y/x) (30.3)=(7.2)
или в общем случае
p(x1,x2,...,xn)=p(x1,x2,...,xi/xi+1,xi+2,...,xn)p(xi+1,xi+2,...,xn) (30.3).
Для независимых с.в. p(x,y)=p(x)p(y) (31)=(3) - плотность распределения системы независимых с.в. равна произведению плотностей распределения отдельных величин, входящих в систему.
