Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы на экзамен

.doc
Скачиваний:
45
Добавлен:
14.05.2015
Размер:
302.08 Кб
Скачать

Б-8

Гормоны, производные жирных кислот.Стероидные гормоны.Производные холестерина.Этапы синтеза стероидных гормонов: 1 .Укорочение боковой цепи холестерина. 2. Внедрение атомов кислорода в кольцо под действием ферментов гидроксилаз(+ вит. РР, С, НАДН2).Функции: | прочность сосудов, |секРеЧию пищ.соков - J, выработка слизи; противоаллергическое действие, противоспалительное действие; влияют на КА.Влияние на У глее, обмен: индуцируют ключевые ферменты ГНГ, репрессирует гексокиназу—^торможение гликолиза—>гипергликемия; На липидный обмен: мобилизация жира из жирового депо, |р-окисление жирных кислот, синтез кет.телили холестерина.//^ белковый обмен: "[распада белков в мышцах, ^биосинтеза белка, |синтез мочевины.Производные полиненаыщенных жирных кислот.Под действием фосфолипазы происходит расщепление фосфолипидов и освобождение арахидоновой кислоты. Под действием липооксигеназы в лейкоцитах из арахидоновой кислоты образуются лейкотриены. Под действием циклооксигеназы из арахид.к-ты образуются промежуточные биологически активные эндоперекиси ПГЕ и ШТ.Функции лейкотриено в: противоспал ител ьное действие, развитие медленных анафилактических р-й, освобождение ферментов лизосом, хемотаксис лейкоцитов, сокращение гладких мышц.Функции ПГЕ и простациклинов: дезагрегация тромбоцитов, расширение просвета сосудов, факторы |риск развития инфаркта миокарда.Функции ПТТ и тромбоксанов: "[агрегация тромбоцитов, сужение просвета сосудов, |АД; факторы |риск развития инфаркта миокарда.

2. 11 ереа м и н и рован и е (трансаминирование) аминокислотРеакция катализируется аминотрансферазами (в состав витамин В6). В переаминировании участвуют аминокислота и кетокислота. В результате образуются новая аминокислота и новая кетокислота. Значение реакции переаминировании 1.Коллекторная функция (аминогруппы собираются в одной форме в виде глутамата)2.Источником заменимых аминокислот;

3 .Аминокислоты превращаются в кетокислоты, которые могут окисляться в цикле Кребса, использоваться в ГНГ или превращаться в кетоновые тела. Гликогенные- аминокислоты, превращаются в углеводы(таких 15). Кетогенные - аминокислоты, превращаются в кетоновые тела (лейцин). Смешанные- аминокислоты, дают углеводы и кетоновые тела (фенилаланин, тирозин, триптофан, лизин).4. Аминотрансферазы — это универсальные ферменты, которые имеются в каждой клетке. Увеличение активности аминотрансфераз свидетельствует о разрушении тех клеток, где они находились. Активируются катехоламинами, глюкокортикостероидами, йодтиронином.Непрямое деземинирование аминокислот.(см. лист)3начение: косвенное дезаминирование необходимо, т. к. в организме нет других дегидрогиназ, а только глутамат ДГ.(наибольшее значение для головного мозга при голодании).

Б-9

J 1. Катаболизми- расщ-е слож вещ=вдо простых с выделением энергии и обр-ем С02 Н20. Анаболизм синтезслож вещ-в до прост с затратой энергии. Метаболизм обмен вещ-в в орг-ме. Источниками энергии в орг-ме явл-ся ОВпроцессы. Способы передачи электронов: изменение валентности, передача электронов в составе атомов Н, передача элекр-в в сост-ве гидридионов, присое-е кислорода. Отличия реакции окислебния: 1. в лабораторных условия Н и О взаимод-ет сразу со взрывом, 2. в живой природе мягкие условия, 3. в орг-ме энергия АТФ (в лаболаторных условиях тепло), 4. вода способствует окислению в орг-ме и препятствует в неживой природе. Этапы катаболизма: 1-й этап, макромолекулы расщепляются до своих мономеров, полисахариды распадаются до моносахаридов (гексоз и пентоз); жиры — до глицерина и жирных кислот; белки — до аминокислот. Этот этап является специфическим, катализируется ферментами класса гидролаз. Он локализован в пищеварительном тракте для пищевых мак­ромолекул, а для эндогенных— в основном в лизосомах. Этот этап энергетической ценности не имеет, выделяется менее 1% энергии-тепло. 2-й этап, специфическим путь катаболизма. Каждый из мономеров превращается в одну из карбоновых кислот. Моносахариды, глицерин и некоторые аминокислоты превращаются в пируват. Жирные кислоты и часть аминокислот — в ацетил-КоА 2-й этап происходит в митохондриях и цитозоле клеток, энергия выделяется в виде тепла и используется на синтез АТФ. 3-этап. Общий, неспецифический. На этом этапе пируват в процессе окислительного екарбоксилирования превращается в ацетил-КоА. Ацетил-КоА, оксалоацетат и 2-оксоглутарат окисляются в цикле Кребса. За один оборот цикла Кребса образуются 2 молекулы С02,. Водород, полученный в де-гидрогеназных реакциях, присоединяется к НАД^ и ФАД. с образованием НАДН и ФАДН2, которые окисляются в дыхательной цепи. При этом образуется вода, а в энергия используется АТФ, тепло, р-ии локализованы в митохондриях. Экзергонические - р-ии протекающие самопроизвольно и сопровождающиеся ум-ем своб-й энергии если AG отриц. Эндегонические - если AG+, р-ия будет протекать только при поступлении свободной энергии из вне.

2. Синтез креатина Креатинфосфат- запасной макроэрг.Креатинин определяется в крови и моче для расчета клиренса (показывает очистительную способность почек).

Креатинкиназа- Определяется ее активность в сыворотке крови, для диагностики инфаркта миокарда.Креатинурия - выделение с мочой креатина, возникает при повышенном его содержании в крови, при избыточном употреблении мяса. Сопровождается распадом мышечной ткани

Б-10 К/ 1. Витамин А

"Ретиналь. Потребность 1,5г. Источники: искл жив продукты-печень, желток, слив, масло, сметана, сыр, маргарин.Значение: ретиноевая к-та участвует в росте, дифференцировке клеток; активирует ферменты лизосом; проокислительное действию; необходим для норм, митоза, регулирует апоптоз клеток; антиоксидантное действие; активирует включение сульфатов в протеогликаны—способствует рост ребенка, в гепарины—^поддерживает реологические свойства крови; повышает сопротивляемость организма; обеспечение норм зрительной функции.Гиповитаминоз: задержка роста, воспалительные заболевания, пигментный ретинит, нарушение сумеречного зрения.Авитаминоз: куриная слепота, ксерофтальмия, кератомаляция, у детей - остановка роста костей. - 2. Окислительное декарбоксилирование пирувата катализируется пируватдегидрогеназой (ПДГ). ПДГ — это комплекс из трех ферментов, для работы которого требуются следующие витамины: Bi (тиамин), В2 (рибофлавин), РР (никотинамид), пантотеновая и липоевая кислоты. ПДГ осуществляет декарбоксилирование (отщепление карбоксильной группы) и окисление (отщепление водорода) молекулы пирувата.

—НАДН Окисляется в дыхательной цепи. Регуляция ПДГ: ПДГ может быть в двух формах: фосфорили-рованной (неактивной) и дефосфорилированной (активной). АТФ, НАДН, ацетил-КоА, жирные кислоты ингибируют ПДГ, инсулин активирует. Поставляет ацетил КоА в дых цепь. Цикл Кребса: НАДН и ФАДН2 окисляются в дыхательной цепи. Регуляция осуществляется путем влияния на ключевые ферменты: цит-ратсинтазу (начинает процесс), изоцитратдегидрогеназу (лимитирующий фермент), 2-оксоглутаратдегидрогеназу (фермент, сто­ящий на развилке).Цитратсинтазу активируют оксалоацетат и ацетил-КоА, инги-бируют АТФ, НАДН, длинноцепочные ацилы-КоА, сукцинил-КоА. Изоцитратдегидрогеназа является аллостерическим ферментом. Ее активируют АДФ, Са2+, цАМФ. Ингибируют изоцитратде­гидрогеназу АТФ, НАДН, НАДФН. 2-оксоглутаратдегидрогеназу активируют Са2+ и цАМФ, ин-гибирует сукцинил-КоА. Цикл Кребса активируется под влиянием катехоламинов, глю-кагона и йодтиронинов. Значение жатаболическое и энергетическое (цикл Кребса является общим конечным путем распада для метаболитов всех классов соединений; в нем образуется АТФ в результате субстратного фосфорилирования; он является главным поставщиком водорода для дыхательной цепи);анаболическое или биосинтетическое Промежуточные ме­таболиты цикла Кребса используются на синтез других соедине ний. Например, из оксалоацетата, 2-оксоглутарата и сукцината образуются аминокислоты; из оксалоацетата — глюкоза и другие углеводы; сукцинил-КоА используется на синтез г&ма;регуляторное. Метаболиты — цитрат и АТФ являются регу ляторами других процессов. Они активируют синтез жирных кислот и ингибируют гликолиз.

Б-11

1). 1. Фолиевая кислота и витамин Bi2, их биологическая роль.

i Витамин В9 (фолацин, фолиевая кислота или фолин) водорастворимый витамин группы В.Активная форма образуется путем гидрирования (присоединяются 4 атома водорода с помощью фолатредуктазы) и называется тетрагидрофолиевой кислотой (ТГФК). Состоит из 3 структурных единиц - остатка птеридина, парааминобензойной и глутаминовой кислот. Витамин, полученный из разных источников, может содержать 3-6 остатков глутаминовой кислоты. Потребность взрослого человека в витамине В9 около 200 мкг/сут, беременных и кормящих женщин - 400-600 мкг; детей первого года жизни - 40-60 мкг. При нормальном составе микрофлоры в кишечнике организм может синтезировать фолиевую кислоту самостоятельно. Основным источником фолацина в питании являются зерновые, мука грубого помола, много его в овощах, зелени (петрушке, шпинате, салате, луке), ранней капусте, зеленом горошке), в свежих грибах, пищевых дрожжах, присутствует в твороге, сырах, рыбе, мясе. Основная функция фолиевой кислоты и её производных — перенос одноуглеродных групп, например метильных и формильных, от одних органических соединений другим. В первую очередь от нехватки фолиевой кислоты страдает костный мозг, в котором происходит активное деление клеток. Клетки-предшественники красных кровяных телец (эритроцитов), образующиеся в костном мозге, при дефиците фолиевой кислоты увеличиваются в размере, образуя так называемые мегалобласты и приводя к мегалобластной анемии. При беременности повышается риск развития дефектов нервной трубки.Витамин В12 (кобаламин, антианемический витамин)В структуру витамина входит гемподобная структура, содержащая кобальт. В|2 входит в состав кобамидных ферментов. Участвует в переносе метильной группы при образовании метионина из гоиоцистеина. Участвует в превращении метилмалонила в сукцинил-КоА. Облегчает депонирование и образование коферментных форм фолиевой кислоты. Сут потр 2-3 мкг. Печень, почки, рыба, мясо. Гипо- мегалопластическая анемия, нар-е пролиферации эпит клеток, нейропатия, атеросклероз, жировая дистрофия печени. 2.) Источники аммиака и пути его обезвреживания Образуется 1 .В результате реакций дезаминирования:-аминокислот; -биогенных аминов; -пуриновых и пиримидиновых азотистых оснований; -амидов аминокислот в тканях организма. 2.Часть в кишечнике в результате деятельности микрофлоры (гниение белков).Всасьшается в кровь воротной вены. Содержание аммиака в крови в норме 25-40 мкмоль/л.Биосинтез мочевиныАктив: катехоламины, ГКС, тяжнлая мышечная работа, голодание.

Гипераммонемия- повышенное содержание аммония. Причины: генетический дефекты ферментов орнитинового цикла в печени, вторичное поражение печени в результате цирроза, гепатита и др. Симптомы тошнота, рвота, головокружение, судороги, потеря сознания, отек мозга, отставание умственного развития. Норма содержания аммония в крови 60 мкмоль/л. Лечение мало белковые диеты, введение кетоаналогов аминокислот в рацион и стимуляция выведения аммония в обход нарушенных реакций(путем связывания и выведения NH3 в составе фенилацетилглутамина и гиппуровой кислоты; повышением концентрации промежуточных метаболитов цикла(аргенина, цитруллина, глутамата)).

Б-12

17) Окислительное декарбоксилирование пирувата катализируется пируватдегидрогеназой (ПДГ). ПДГ — это комплекс из трех ферментов, для работы которого требуются следующие витамины: Bj (тиамин), В2 (рибофлавин), РР (никотинамид), пантотеновая и липоевая кислоты. ПДГ осуществляет декарбоксилирование (отщепление карбоксильной группы) и окисление (отщепление водорода) молекулы пирувата.

—НАДН Окисляется в дыхательной цепи. Регуляция ПДГ: ПДГ может быть в двух формах: фосфорили-рованной (неактивной) и дефосфорилированной (активной). АТФ, НАДН, ацетил-КоА, жирные кислоты ингибируют ПДГ, инсулин активирует. Поставляет ацетил КоА в дых цепь. Цикл Кребса: НАДН и ФАДН2 окисляются в дыхательной цепи. Регуляция осуществляется путем влияния на ключевые ферменты: цит-ратсинтазу (начинает процесс), изоцитратдегидрогеназу (лимитирующий фермент), 2-оксоглутаратдегидрогеназу (фермент, сто­ящий на развилке).Цитратсинтазу активируют оксалоацетат и ацетил-КоА, инги-бируют АТФ, НАДН, длинноцепочные ацилы-КоА, сукцинил-КоА. Изоцитратдегидрогеназа является аллостерическим ферментом. Ее активируют АДФ, Са2+, цАМФ. Ингибируют изоцитратде­гидрогеназу АТФ, НАДН, НАДФН. 2-оксоглутаратдегидрогеназу активируют Са + и цАМФ, ин-гибирует сукцинил-КоА. Цикл Кребса активируется под влиянием катехоламинов, глю-кагона и йодтиронинов. Значение :катаболическое и энергетическое (цикл Кребса является общим конечным путем распада для метаболитов всех классов соединений; в нем образуется АТФ в результате субстратного фосфорилирования; он является главным поставщиком водорода для дыхательной цепи);анаболическое или биосинтетическое Промежуточные ме­таболиты цикла Кребса используются на синтез других соедине ний. Например, из оксалоацетата, 2-оксоглутарата и сукцината образуются аминокислоты; из оксалоацетата — глюкоза и другие углеводы; сукцинил-КоА используется на синтез гема;регуляторное. Метаболиты — цитрат и АТФ являются регу ляторами других процессов. Они активируют синтез жирных кислот и ингибируют гликолиз. 2. Регуляция обмена кальция.Принимают участие паратгормон(гормон паращитовидных желез), тиреокальцитонин(гормон щитовидной железы) и вит. D.

Паратгормон (паратирин) является белково-пептидным гормоном, состоит из одной полипептидной цепи(84 аминокислоты), имеет молекулярную массу9500. Паратгормон в почках усиливает реабсорбцию Са и Mg, но |реабсорбцию фосфата. В костях паратгормон стимулирует остеокласты и способствует выведению кальция из костей. В ЖКТ паратгормон усиливает

S

всасывание кальция и фосфора. Т.о, паратгормон "{"кальция в крови. Аналогичным способом концентрацию регулирует bht.D. в почках bht.D стимулирует реабсорбцию кальция и фосфора. Этим действие bht.D отличается от действия паратгормона.Тиреокальцитонин является белково-пептидным гормоном, с молекулярной массойЗбОО. Усиливает отложение фосфорно-кальциевых солей на коллагеновую матрицу костей. Тиреокальцитонин, как и паратгормон, усиливает фосфатурию. Роль 1.25-дигидроксикальци-ферола в обмене Са и Р.: Усиливает всасывание Са и Р из кишечника, Усиливает реабсорбцию Са и Р почками, Усиливает минерализацию молодой кости, Стимулирует остеокласты и выход Са из старой кости. При недостатке bht.D возникает рахит.

Б-14

1. Синтез гликогена происходит с участием нескольких ферментов: гексокиназы, фосфоглюкомутазы (переводит глюкозо-6-фосфат в глюкозо-1 -фосфат), уридилтрансферазы (образует УДФ-глюкозу), гликогенсинтетазы (переносит глюкозу с УДФ-глюкозы на имеющуюся молекулу гликогена и присоединяет ее 1,4-глико-зидной связью). Таким образом, чтобы удлинить молекулу гликогена на одно звено глюкозы необходимо затратить 2 макроэрга (АТФ и УТФ). Ветвление гликогена происходит под влиянием вет-вящего фермента. Распад гликогена происходит двумя путями: Гидролитический путь идет в лизосомах клеток под действием у-амилазы при участии воды без образования промежуточных продуктов.Фосфоролитический путь (фосфоролиз) идет в цитоплазме под действием фосфорной кислоты с образованием промежуточных продуктов, катализируется несколькими ферментами.Оба способа расщепления гликогена приводят к образованию глюкозы. В мышцах фосфоролиз заканчивается на глюкозо-6-фосфате, так как в них нет глюкозо-6-фосфатазы. Таким образом, только печень является источником глюкозы для крови.Ключевыми ферментами синтеза гликогена являются: гексокиназа и гликогенсинтетаза, распада гликогена — фосфорилаза и глюкозо-6-фосфатаза. Синтез гликогена усиливается инсулином, распад стимулируется катехоламинами, глюкагоном, глюко-кортикостероидами, цАМФ и Са2+. Печень запасает глюкозу в виде гликогена для поддержания постоянной концентрации глюкозы в крови. Ф-ия мышечного гликогена заключ-ся в освобождении глюкозо 6 фосфата, потребляемого в самой мышце для окисления и использования энергии. Гликогенозы. В этом случае нарушен распад гликогена. Гликоген накапливается в клетках в больших количествах, что может привести к их разрушению. Клинические симптомы: увеличение размеров печени, мышечная слабость, гипогликемия натощак. Известно несколько типов гликогенозов. Они могут быть вызваны недостаточностью глюкозо-6-фосфатазы, фосфорилазы или у-амилазыАгликогенозы вызываются недостаточностью ферментов, уча­ствующих в синтезе гликогена. В результате нарушается синтез гликогена и снижается его содержание в клетках. Симптомы: резкая гипогликемия натощак, особенно после ночного перерыва в кормлении. Гипогликемия приводит к отставанию в умственном развитии. Больные погибают в детском возрасте.

юсфатный путь (ПФП) Это прямое окисление глюкозо-6-фосфата. Состоит из двух

частей: окислительной (необратимой) и неокислительной (обратимой). В ходе окислительной части-ПФП при участии глюкозо-6-фосфатдегидрогеназы и 6-фосфоглюконатдегидрогеназы глюко-зо-б-фосфат окисляется с образованием рибозо-5-фосфата, С02, 2 молекул НАДФН. В неокислительной части ПФП из каждых трех молекул рибозо-5-фосфата образуются 1 молекула фосфоглице-ринового альдегида и 2 молекулы фруктозо-6-фосфата. Дальнейшая судьба этих метаболитов известна: они могут либо окисляться в гликолизе и, в зависимости от условий, превращаться в лактат или пиру ват, либо использоваться в ГНГ на образование глюкозы. Если метаболиты окислительной части ПФП будут использоваться в ГНГ, тогда будет иметь место замыкание процесса, то есть ПФП примет вид цикла. Для протекания неокислительной части ПФП необходим витамин Вг Значение ПФП: 1) энергетическое — образующиеся метаболиты окислительной части могут использоваться в гликолизе; 2) синтетическое — связано с использованием рибозо-5-фосфата и НАДФН. Рибозо-5-фосфат используется на синтез нуклеотидов, которые необходимы для образования коферментов, макроэргов, нуклеиновых кислот. НАДФН необходим для восстановительных биосинтезов (для работы редуктаз в синтезе холестерина и жирных кислот; в образовании дезоксирибозы из рибозы; для восстановления глутатиона, в бразовании глутамата из 2-оксог-лутарата); для работы гидроксилаз, участвующих

в синтезе кате-холаминов, серотонина, стероидных гормонов, желчных кислот, активной формы витамина Д, синтезе коллагена, обезвреживании ксенобиотиков; используется в трансгидрогеназной реакции.ПФП локализован в цитозоле клеток. Он особенно активен в тканях эмбриона и плода, лимфоидной и миелоидной тканях, слизистой тонкого кишечника, жировой ткани, эндокринных железах (надпочечники, половые), молочных железах (в период лактации), печени, эритроцитах, пульпе зуба, зачатках эмали зуба, при гипертрофии органов. ПФП мало активен в нервной, мышечной и соединительной тканях. ПФП способствует прозрачности хрусталика глаза; предупреждает гемолиз эритроцитов; входит в систему защиты от свободных радикалов и активных форм кислорода. Регуляция ПФП: ключевыми ферментами являются глюко-зо-б-фосфатдегидрогеназа, 6-фосфоглюконатдегидрогеназа,

транскетолаза. Активность ПФП увеличивается при повышении отношения НАДФ+/ НАДФН, а также под влиянием инсулина и йодтиронинов. ПФП ингибируют глюкокортикостероиды. \2) Участие в образовании внутриклеточных структур: Гид ратная оболочка ионов, Гидратная оболочка вокруг белков,Вода внутри третичной структуры белков. Участие в транспорте различных веществ. Реализации этой функции способствуют: Низкая вязкость, Высокая подвижность,Высокая растворяющая способность воды. Среда для химических реакций. Вода является участником химических реакций:Гидролиз веществ, реакция гидротации. Вода необходима для выведения продуктов обмена веществ. Участие в теплорегуляции. Входит в состав смазки, то есть облегчает скольжение трущихся поверхностей

Регуляция воды АДГ: когда осмотическое давление крови увеличивается (при обезвоживании) выделяется АДГ, который действует на дистальные канальцы и собирательные трубочки почек. В результате проницаемость для воды увеличивается, диурез уменьшается и осмотическое давление снижается.

Б-17

  1. Глюконеогенез — это синтез глюкозы из неуглеводных предшественников (лактата, пирувата, оксалоацетата, глицерина, аминокислот). На образование 1 молекулы глюкозы расходуется 6 макроэргов (4 АТФ и 2 ГТФ). ГНГ локализован в цитоплазме гепатоцитов печени, в клетках коры почек и тонкого кишечника. Около 90% лактата, используемого в глюконеогенезе, поступает в печень, 10% — в почки и тонкий кишечник. Значение глюконеогенеза! .Является важным источником глюкозы в организме;2.Удаляет большую часть лактата из клеток и тканей, работающих в анаэробных условиях, что предохраняет их от метаболического ацидоза. ГНГ особенно важен после интенсивной мышечной работы, когда накапливается лактат. 20-30% лактата может окисляться до С02 и Н20 в самой мышце, 70-80% используется в ГНГ на образование глюкозы. Так как в мышце нет ГНГ, лактат из нее поступает в кровь, затем в печень, где превращается в глюкозу, которая кровью разносится всем органам и тка­ням, в том числе и мышцам. Таким образом, между печенью и мыщцей существует взаимосвязь, так называемый цикл Кори (глю-козо-лактатный цикл).Регуляция глюконеогенеза Ключевыми ферментами ГНГ являются: пируваткарбоксила-за, ФЕПКК, фруктозо-1,6-дифосфатаза, глюкозо-6-фосфатаза.ГНГ усиливают: глюкагон, катехоламины, глюкокортикосте-роиды, ацетил-КоА, АТФ, цАМФ, Са2+. Тормозят глюконеогенез: инсулин, АДФ, этанол. Источники глюкозо-6-фосфата: 1) во всех клетках образуется из глюкозы в ходе гексокиназной реакции; 2) в печени и мышцах образуется в ходе фосфоролиза из гликогена; 3) в печени, мышцах, тонком кишечнике — в результате ГНГ; 4) в печени — в результате унификации моносахаридов. Пути использования глюкозо-6-фосфата: 1) синтез гликогена; 2) окисление до лактата в анаэробных условиях и до С02 и Н20 в аэробных; 3) окисление в пентозофосфатном пути; превращение в глюкозу (в печени, тонком кишечнике и коре почек). Глюкоз о-лактатный цикл (цикл Кори) утилизация лактата, предотвр накопление лактата(лактоацидоз). Глюкозо-аланиновый цикл глюкоза в мышцах—> пируват в мышцах—>аланин в мыш—>-аланин в печени—^глюкоза в печени—> глюкоза в мыш. Решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.

  2. С - аскорб кислота в черемше 1.Необходим для работы гидроксилаз: Для превращения пролина и лизина в гмдроксипролин и гидроксилизин,при этом проколаген превращается в зрелый коллаген, при недостатке или отсутствии в продуктах питания аскорбиновой кислоты страдает образование нормальной соеденительной ткани. В результате повышается проницаемость и ломкость капилляров; в биосинтезе КА, стероидных гормонов и серотонина.; в биосинтезе карнитина 2.Необходим для превращения Fe3+ в Fe2+ . этот переход необходим: в кишечнике для

всасывания железа; для освобождения железа из его транспортных форм (комплекс с трансферином), что облегчает его поступление в ткани.З.Необходим для перехода фолата в коферментные формы.4.Поддерживает SH - группы белков в восстановленном состоянии. 5.Увеличивает сопротивление к инфекциям. б.Увеличивает работоспособность. 7.Снижает риск развития атеросклероза. 8.Снижает потребность организма в витаминах: Bj, B2> А, Е, Фолате и пантотеновой кислоте. Главное св-во: аскорбат —>дегидроаскорбат (участв в процессах окисления и востанавления). Гипер - спос сопротивл инфекции, сниж проникн инф-ии в капиляры, проф-ка атеросклероза. Гипо - цинга (цианоз десен, выпадение зубов). Должен работать со своим биофлавоноидом рутинном(вит Р). Р- рутин(катехины, флавононы, изофлавоны). Сут потр 50-100мг. Гречиха чай, цитрусовые, рис, яблоки, бабовые, свекла, шоколад, кофе. Жирораств формы - оливки и зеленый чай. Стабилизирует осн вещ-во соед-ой ткани путем ингибирования гиалуронидазы. Гипо - повш прониц кров сосудов, быстрая утомляемость, боли в конечностях, вазопатия с петехиальными кровоизлияниями.

Витамин Е.

Б-18

Токоферол. Токотриенол. Суточная потребность: 10-30мг.Итсточники:растительное, соевое, облепиховое,кукурузное масла; яйцо; маргарин; печень; бобовые.

Значение:-биологический антиоксидант; -стимулирует синтез гема—^синтез гемсодержащих белков—►улучшает дыхание тканей,!синтез белков; -активирует синтез коллагена, сократительных белков, плаценты; -^биологическую активность вит.А.

Гиповитаминоз:миодистрофия, кардиодистрофия, нарушение синтеза креатинфрсфата и креатинина, бесплодие, гемолиз эритроцитов, атеросклероз.

Гипервитаминоз: тромбоцитопатия, гипокоагуляция, ослабление темнового зрения, гипогликемия, |мышечной утомляемости.

Витамин К.Антигеморрагический вит. Значение: препротромбин—>тромбин; радиопротекторное действие.Гиповитаминоз:падает концентрация серотонина, гистамина, ацетилхолина..

2. Пентозофосфатный путь (ПФП) Это прямое окисление глюкозо-6-фосфата. Состоит из двух частей: окислительной (необратимой) и неокислительной (обратимой). В ходе окислительной части-ПФП при участии глюкозо-6-фосфатдегидрогеназы и 6-фосфоглюконатдегидрогеназы глюко-зо-б-фосфат окисляется с образованием рибозо-5-фосфата, СОг, 2 молекул НАДФН. В неокислительной части ПФП из каждых трех молекул рибозо-5-фосфата образуются 1 молекула фосфоглице-ринового альдегида и 2 молекулы фруктозо-6-фосфата. Дальнейшая судьба этих метаболитов известна: они могут либо окисляться в гликолизе и, в зависимости от условий, превращаться в лактат или пируват, либо использоваться в ГНГ на образование глюкозы. Если метаболиты окислительной части ПФП будут использоваться в ГНГ, тогда будет иметь место замыкание процесса, то есть ПФП примет вид цикла. Для протекания неокислительной части ПФП необходим витамин Вг Значение ПФП: 1) энергетическое — образующиеся метаболиты окислительной части могут использоваться в гликолизе; 2) синтетическое — связано с использованием рибозо-5-фосфата и НАДФН. Рибозо-5-фосфат используется на синтез нуклеотидов, которые необходимы для образования коферментов, макроэргов, нуклеиновых кислот. НАДФН необходим для восстановительных биосинтезов (для работы редуктаз в синтезе холестерина и жирных кислот; в образовании дезоксирибозы из рибозы; для восстановления глутатиона, в бразовании глутамата из 2-оксог-лутарата); для работы гидроксилаз, участвующих в синтезе кате-холаминов, серотонина, стероидных гормонов, желчных кислот, активной формы витамина Д, синтезе коллагена, обезвреживании ксенобиотиков; используется в трансгидрогеназнойреакции.ПФП локализован в цитозоле клеток. Он особенно активен в тканях эмбриона и плода, лимфоидной и миелоидной тканях, слизистой тонкого кишечника, жировой ткани, эндокринных железах (надпочечники, половые), молочных железах (в период лактации), печени, эритроцитах, пульпе зуба, зачатках эмали зуба, при гипертрофии органов. ПФП мало активен в нервной, мышечной и соединительной тканях. ПФП способствует прозрачности хрусталика глаза; предупреждает гемолиз эритроцитов; входит в систему защиты от свободных радикалов и активных форм кислорода. Регуляция ПФП: ключевыми ферментами являются — глюко-зо-б-фосфатдегидрогеназа, 6-фосфоглюконатдегидрогеназа, транскетолаза. Активность ПФП увеличивается при повышении отношения НАДФТ/