Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Определители.doc
Скачиваний:
33
Добавлен:
17.05.2013
Размер:
850.43 Кб
Скачать

5°. Обратная матрица. Пусть – квадратная матрица порядка над полем .

Определение 1. Матрица называется обратной для , если .

Определение 2. Квадратная матрица называется невырожденной (или неособой), если и вырожденной (особой), если .

Из теоремы 2 пункта 4  произведение матриц, одна из которых вырождена, будет вырожденной матрицей, а произведение двух невырожденных матриц дает невырожденную матрицу.

Определение 3. Матрицей присоединенной к матрице , называется матрица

,

где – алгебраическое дополнение элемента матрицы .

Лемма: Для матриц и справедливо .

Доказательство: Пусть . Тогда

Итак, . Аналогично .

Теорема 1: Для того, чтобы для матрица существовала обратная, необходимо и достаточно, чтобы матрица была невырожденной.

Доказательство:  Пусть для матрицы

Замечание: итак

Пример:

Свойства обратных матриц:

Пусть

Тогда

1.

2.

3.

4.

5.

§8. Теорема о базисном миноре матрицы.

1°. Линейная зависимость строк матрицы.

Пусть – поле.

Определение 1. Будем говорить, что строка является линейной комбинацией строк , если для некоторых справедливо

, (1)

Это равенство удобно записать в матричном виде:

(1’)

Определение 2. Строки назовем линейно зависимыми, если такие одновременно не равные нулю, такие что

Строки, не являющиеся линейно зависимыми, являются линейно независимыми. Иными словами, – линейно независимы, если равенство возможно лишь когда

Теорема 1: Строки – линейно зависимы одна из этих строк является линейной комбинацией остальных.

Доказательство:

но

2°. Теорема о базисном миноре.

Рассмотрим матрицу , где –поле матрицы размера .

Определени 3. Число называется рангом матрицы , если

1) минор порядка , отличный от нуля.

2) Все миноры –го порядка равны нулю.

Т.о., рангом матрицы называется порядок наибольшего отличного от нуля минора.

Минор –го порядка, отличный от нуля, называется базисным минором, строки и столбцы, на пересечении которых находится базисный минор, называются базисными строками и базисными столбцами.

Теорема 2 (теорема о базисном миноре): Базисные строки (столбцы) линейно независимы. Любая строка (любой столбец) матрицы является линейной комбинацией базисных строк (базисных столбцов).

Доказательство (рассуждение для строк):

Покажем, что базисные строки линейно независимы

Если первая, например, строка – линейная комбинация остальных, то вычитая в базисном миноре из первой строки линейную комбинацию остальных, получим нулевую строку базисный минор нулевой – противоречие.

Докажем, что строка является линейной комбинацией остальных. Т.к. при переменах строк и столбцов определитель сохраняет свойство равенства (неравенства) нулю, то будем считать, что базисный минор составлен из первых r строк и r столбцов.

Рассмотрим определитель порядка

Здесь Если то две одинаковые строки или столбца и определитель равны нулю. то это минор порядка равен нулю. Итак определитель равен нулю и .

Разложим его по столбцу. Отметим, что

и коэффициенты не зависят от выбора , т.е.

что означает, что –ая строка является линейной комбинацией первых r.

Теорема 3 (необходимое и достаточное условие равенству нулю определителя):

Определитель –го порядка равен нулю его строки (столбцы) линейно зависимы.