Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

#books / lections_2013 / Лекция7

.doc
Скачиваний:
169
Добавлен:
12.05.2015
Размер:
290.3 Кб
Скачать

Лекция №7

Входное и выходное сопротивление для усилителя с общим эмиттером

Для входного сигнала схема представляет собой параллельное соединение резисторов R1 (110кОм), R2(10кОм) и входного сопротивления со стороны базы. Последнее приблизительно равно 50 кОм, а значит, входное сопротивление усилителя с общим эмиттером равно приблизительно 8 кОм (преобладающую роль играет сопротивление 10 кОм). Если используется развязывающий конденсатор, указанный на схеме, то получаем фильтр высоких частот с точкой - 3 дБ на частоте 200 Гц. Для сигналов в рабочей полосе частот (выше частоты, соответствующей точке - 3 дБ) конденсатором емкостью 0,1 мкФ можно пренебречь и учитывать только сопротивление 8 кОм, соединенное с ним последовательно.

Выходное сопротивление определяется как параллельное соединение сопротивления 10 кОм и выходного сопротивления транзистора со стороны коллектора. В линейном режиме работы, область коллектор-эмиттер обладает очень большим сопротивлением, поэтому выходное сопротивление определяется коллекторным резистором, сопротивление которого составляет 10 кОм.

Источник тока на резисторах

Схема простейшего источника тока показана на рисунке ниже. При условии что Rн << R, ток сохраняет почти постоянное значение и равен приблизительно I = U/R.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать резисторы с большим сопротивлением, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Транзисторный источник стабильного тока

Очень хороший источник тока можно построить на основе транзистора

Работает этот источник следующим образом: напряжение на базе Uб > 0,6 В поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб - 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uэ - 0,6)/Rэ. Так как Iэ ≈ Iк, то Iк ≅ (Uб - 0,6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В). В режиме насыщения ток транзистора будет максимальным и дальше расти не будет.

Смешение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току. Можно воспользоваться также стабилитроном и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера.

Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания.

В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения Uб, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источника тока, построенного по схеме предложенной выше.

1. При заданном токе коллектора, напряжение Uбэ (эффект Эрли), и коэффициент несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока и напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк = Iэ - Iб; Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно.

2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения и Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью такой схемы:

В этой схеме падение напряжения между базой и эмиттером транзистора Т2 компенсируется падением напряжения на эмиттерном переходе Т1 который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2.

Улучшение характеристик источника тока.

Вообще говоря, изменение напряжения Uбэ, вызванное как влиянием температуры (относительное изменение составляет приблизительно -2 мВ/°С), так и зависимостью от напряжения Uбэ (эффект Эрли оценивается величиной ΔUбэ ≈ -0,001 ΔUкэ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения Uбэ на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если Uэ = 0,1В (т. е. к базе приложено напряжение 0,7 В), то изменение напряжения Uбэ на 10 мВ вызывает изменение выходного тока на 10%, если же Uэ = 1,0 В, то такое же изменение Uбэ вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10 В, напряжение на эмиттере сделать равным +5 В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от Uэ + 0,2 В до Uкк, т. е. от 5,2 до 10 В).

Источник тока Т1 работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера Т2. Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для Т2) и эмиттерный токи приблизительно равны между собой. В этой схеме напряжение Uкэ (дая Т1) не зависит от напряжения на нагрузке (оно фиксируется эмитерным повторителем на Т2), а это значит, что устранены изменения напряжения Uбэ, обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%.

Усилители на биполярных транзисторах

Классификация усилителей.

Устройство, предназначенное для усиления электрических сигналов, называется электронным силителем.

Основной классификацией усилителей является классификация по диапазону усиливаемых частот.

1. Усилители низкой частоты (УНЧ) – диапазон усиливаемых частот от 10Гц до 100 кГц.

2. Усилители высокой частоты (УВЧ) – диапазон усиливаемых частот от 100кГц до 100 МГц.

3. Усилители постоянного тока (УПТ). Они могут усиливать постоянный ток. Диапазон усиливаемых частот от 0Гц до 100кГц.

4. Импульсные усилители (ИУ) – широкополосные импульсные- и видеоусилители. Частотный диапазон усиливаемых частот от 1кГц до 100МГц.

5. Избирательные, или резонансные усилители – это усилители, работающие в узком диапазоне частот.

Классификация по назначению:

  1. Усилители напряжения;

  2. Усилители постоянного тока;

  3. Усилители мощности;

  4. Повторители;

  5. Усилители разности сигналов – дифференциальные усилители;

  6. Операционные усилители;

  7. Инструментальные усилители (Измерительные усилители – очень качественные, точные и стабильные – для измерения очень малых сигналов).

Основные технические характеристики усилителей.

  1. Коэффициент усиления.

Если коэффициент усиления недостаточен, применяются многокаскадные усилители.

В многокаскадных усилителях общий коэффициент усиления равен произведению коэффициентов усиления каждого каскада.

2. Входное и выходное сопротивление. Эквивалентную схему усилителя можно представить следующим образом.

Задача передачи максимальной энергии от источника сигнала на вход усилителя, а также с выхода усилителя на нагрузку называется согласованием. Для оптимального согласования по напряжению, например, входное сопротивление усилителя должно быть как можно больше, т. е. значительно больше сопротивления источника сигнала, а выходное сопротивление значительно меньше сопротивления нагрузки. Вопросы согласования возникают и в многокаскадных усилителях. Если два усилительных каскада не согласованы между собой по входному и выходному сопротивлению, то между ними ставится эмиттерный повторитель, имеющий очень большое входное и малое выходное сопротивление.

3. Выходная мощность и КПД усилителя. Выходная мощность может быть определена по формуле:

Значительно увеличить выходную мощность усилителя нельзя, т. к. при большом выходном напряжении появляются искажения усиливаемого сигнала за счёт нелинейности характеристик усилительных элементов. Поэтому вносится понятие номинальной выходной мощности. Это наибольшая выходная мощность, при которой сигнал не искажается.

КПД усилителя можно определить по следующей формуле:

4. Уровень собственных шумов состоит из следующих составляющих:

- Тепловые шумы при нагревании сопротивлений, ёмкостей.

- Шумы усилительных элементов.

- Шум за счёт пульсаций источника питания.

5. Диапазон усиливаемых частот (полоса пропускания усилителя). Это полоса частот, в которой выходное напряжение уменьшается не более чем до 0,7 своей максимальной величины.

6. Искажения усилителя возникают за счёт нелинейности характеристик транзисторов.

Искажения происходят за счёт появления в спектре сигнала высших гармонических составляющих, и характеризуется коэффициентом нелинейных искажений (или коэффициент гармоник).

Где U2-Un – гармоники (частоты), которые появились вследствие искажений.

U1 – основная гармоника – частота усиливаемого сигнала.

7. Амплитудная характеристика – это зависимость амплитуды выходного сигнала от амплитуды входного сигнала (смотрите рисунок 216). Uвых = f (Uвх).

  1. Динамический диапазон:

3. Амплитудно-частотная характеристика (АЧХ) представляет собой зависимость амплитуды выходного сигнала от частоты при постоянной амплитуде входного сигнала.

Uвых = f (F) при Uвх = Const.

Часто АЧХ представляют в виде зависимости

Температурная стабилизация (термостабилизация) рабочей точки в усилителе с общим эмиттером

При нагревании рабочая точка смещается по нагрузочной прямой, что приводит к увеличению коллекторного тока Iк и уменьшению напряжения Uкэ. Это равносильно прикладыванию дополнительного открывающего напряжения ко входу транзистора и, как следствие, дополнительному открыванию транзистора.

На рисунках ниже показаны схемы термостабилизации рабочей точки при помощи полупроводникового резистора и полупроводникового диода.

При нагревании сопротивление терморезистора уменьшается, что приводит к общему уменьшению сопротивления включённых в параллель резисторов Rб'' и Rt. За счёт этого напряжение Uбэ будет уменьшаться, эмиттерный переход подзапираться -> ток коллектора уменьшаться и рабочая точка сохраняет своё положение на нагрузочной прямой.

Аналогичным образом происходит термостабилизация рабочей точки полупроводниковым диодом. При увеличении температуры сопротивление диодов в обратном включении будет уменьшаться за счёт термогенерации носителей заряда в полупроводнике. Общее сопротивление включённых параллельно резистора Rб'' и диода VD1 будет уменьшаться, что приведёт к уменьшению напряжения Uбэ, транзистор подзапирается и рабочая точка сохраняет своё положение.

Недостатком схем с терморезистором и полупроводниковым диодом является то, что и терморезистор, и полупроводниковый диод должны подбираться по своим температурным свойствам для каждого конкретного транзистора. Поэтому наиболее часто применяют схемы температурной стабилизации отрицательной обратной связью (ООС) по постоянному току и напряжению.

Термостабилизация рабочей точки при помощи отрицательной обратной связи (ООС) по постоянному напряжению.

При возрастании температуры увеличивается ток коллектора транзистора Iк, следовательно, и ток эмиттера Iэ. Это приводит к увеличению U и -> уменьшению Uбэ (поскольку URб’’ = const). Из этого следует, что эмиттерный переход подзапирается, ток коллектора уменьшается и рабочая точка (РТ) сохраняет своё положение.

Так как изменение напряжения на Rэ должно зависеть только от изменения температуры и не изменяться по закону переменной составляющей усиливаемого сигнала, резистор Rэ шунтируется конденсатором большой ёмкости, через который будет протекать переменная составляющая, а через Rэ будет протекать постоянная составляющая тока. Величину ёмкости выбирают из условия . В качестве такого конденсатора обычно используют электролит 10 мкФ. Rэ выбирают равным 0.1Rк.

Режимы работы усилителей

Режим работы класса А.

В режиме работы класса А рабочая точка устанавливается на линейном участке входной характеристики. Таким образом, на транзистор подается значительное начальное смещение. Для этого между базой и эмиттером транзистора при помощи одной из схем питания цепи базы необходимо создать постоянную составляющую напряжения, которая называется величиной напряжения смещения.

При отсутствии переменной составляющей усиливаемого сигнала рабочая точка называется рабочей точкой покоя.

Рассмотрим рисунок ниже. До момента времени t1 переменная составляющая входного сигнала отсутствует, и под действием величины Eсм в коллекторной цепи транзистора будет протекать постоянная составляющая коллекторного тока, которая называется током покоя.

Режим работы класса А характеризуется минимальными нелинейными искажениями, т. к. усилительный элемент работает на линейном участке характеристики.

Недостатком режима класса А является низкий КПД. η = (25 – 30 %).

Это объясняется тем, что энергия от источника питания затрачивается не только на усиление переменной составляющей, но и на создание постоянной составляющей Iо, которая является бесполезной и в дальнейшем отсеивается разделительным конденсатором.

Режим класса А применяется, в основном, в предварительных каскадах усиления.

Режим работы класса В.

В режиме класса В рабочая точка выбирается таким образом, чтобы ток покоя был равен нулю (смещение транзисторов в режиме покоя отсуствует).

Характеризуется режим класса В высоким КПД η = 60 - 70 %. Недостатком режима класса В являются большие нелинейные искажения. Применяется режим класса В в выходных двухтактных усилителях мощности.

Режим работы класса АВ. Иногда положение точки покоя в режиме класса АВ выбирается на нижнем изгибе проходной динамической характеристики (небольшое смещение в режиме покоя – небольшой ток покоя коллектора). Это немного уменьшает искажения. В месте с этим уменьшается и КПД. Этот режим, как видно из названия, сочетает лучшие качества режимов А и В.

Режим С характеризуется тем, что рабочая точка на входной характеристике сдвинута влево от начала координат (отрицательное смещение). Следовательно, более половины периода транзистор находится в закрытом состоянии. Режим С характеризуется высоким КПД (80%) и очень большими нелинейными искажениями. Применяется в генераторах частоты.

Соседние файлы в папке lections_2013