
- •Лекции по дисциплине курса «Теория вероятностей и математическая статистика»
- •Часть II
- •Введение
- •1. Закон больших чисел
- •1.2. Неравенства чебышева
- •1.3. Сходимость по вероятности
- •1.4.Теоремы чебышева
- •1.4.1.Первая теорема Чебышева.
- •1.4.2. Вторая теорема Чебышева:
- •1.5. Теорема бернулли
- •1.6. Центральная предельная теорема
- •1.7. Предельные теоремы
- •1.7.1. Локальная теорема Муавра-Лапласа.
- •1.7.2. Интегральная теорема Муавра-Лапласа.
- •2. Базовые понятия математической статистики
- •2.1. Эмпирическая функция распределения
- •2.2. Гистограмма
- •2.3. Оценки параметров распределения и их свойства
- •2.4. Оценки моментов и квантилей распределения
- •2.5. Точечная оценка параметров распределения
- •2.5.1. Сущность задачи точечного оценивания параметров
- •2.5.2. Метод максимального правдоподобия
- •2.5.3. Метод моментов
- •2.5.4. Метод квантилей
- •3. Проверка статистических гипотез
- •3.1. Сущность задачи проверки статистических гипотез
- •3.2. Типовые распределения
- •3.2.1. Нормальное распределение
- •3.2.2. Распределение χ2 (хи-квадрат)
- •3.2.3. Распределение Стьюдента
- •3.3.4. Распределение Фишера
- •3.3. Проверка гипотез о законе распределения
- •3.3.1. Критерий хи-квадрат к. Пирсона
- •3.3.2. Критерий а.Н. Колмогорова
- •3.3.3. Критерий р. Мизеса
- •4. Интервальная оценка параметров распределения
- •4.1. Сущность задачи интервального оценивания параметров
- •4.2. Общий метод построения доверительных интервалов
- •4.3. Доверительный интервал для математического ожидания
- •4.4. Доверительный интервал для дисперсии
- •4.5. Доверительный интервал для вероятности
- •5. Аппроксимация закона распределения экспериментальных данных
- •5.1. Задачи аппроксимации
- •5.2. Аппроксимация на основе типовых распределений
- •6. Обработка однотипных выборок
- •6.1. Однотипные выборки эд и задачи их обработки
- •6.2. Объединение выборок
- •6.2.1. Объединение однородных выборок
- •6.2.2. Объединение неоднородных выборок
- •6.3. Однофакторный дисперсионный анализ
- •6.3.1. Задачи дисперсионного анализа
- •6.3.2. Проверка однородности совокупности дисперсий
- •6.3.3. Сравнение факторной и остаточной дисперсий
- •7. Корреляционный и регрессионный анализ
- •7.1. Матрица данных
- •7.2. Корреляционный анализ
- •7.3. Регрессионный анализ
- •7.3.1. Постановка задачи
- •7.3.2. Выбор вида уравнения регрессии
- •7.3.4. Вычисление коэффициентов уравнения регрессии
2.5. Точечная оценка параметров распределения
2.5.1. Сущность задачи точечного оценивания параметров
Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.
Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.
Имеется: выборка наблюдений (x1, x2, …, xn) за случайной величиной Х. Объем выборки n фиксирован.
Известен вид закона распределения величины Х, например, в форме плотности распределения f(Θ, x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.
Требуется найти оценку Θ* параметра Θ закона распределения.
Ограничения: выборка представительная.
Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.
2.5.2. Метод максимального правдоподобия
Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x1, x2, …, xn). Эта вероятность равна
f(х1, Θ) f(х2, Θ) … f(хп, Θ) dx1 dx2 … dxn.
Совместная плотность вероятности
L(х1, х2 …, хn ; Θ) = f(х1, Θ) f(х2, Θ) … f(хn, Θ), (2.7)
рассматриваемая как функция параметра Θ, называется функцией правдоподобия.
В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение
dL/d Θ* = 0.
Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL. Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина
Θ* =(q1, q2, …, qn),
то оценки максимального правдоподобия находят из системы уравнений
d ln L(q1, q2, …, qn) /d q1 = 0;
d ln L(q1, q2, …, qn) /d q2 = 0;
. . . . . . . . .
d ln L(q1, q2, …, qn) /d qn = 0.
Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.
Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.
Пример 2.3. Будем считать, что случайная величина Х имеет нормальное распределение. Необходимо найти оценки максимального правдоподобия параметров m и S этого распределения.
Решение. Функция правдоподобия для выборки ЭД объемом n
.
Логарифм функции правдоподобия
Система уравнений для нахождения оценок параметров
Из
первого уравнения следует:
или
окончательно
Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.
Из второго уравнения можно найти
.
Эмпирическая дисперсия является смещенной. После устранения смещения
Фактические значения оценок параметров: m =27,51, s2 = 0,91.
Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные
Вторые производные от функции ln(L(m,S)) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.
Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.