
- •Лекции по дисциплине курса «Теория вероятностей и математическая статистика»
- •Часть II
- •Введение
- •1. Закон больших чисел
- •1.2. Неравенства чебышева
- •1.3. Сходимость по вероятности
- •1.4.Теоремы чебышева
- •1.4.1.Первая теорема Чебышева.
- •1.4.2. Вторая теорема Чебышева:
- •1.5. Теорема бернулли
- •1.6. Центральная предельная теорема
- •1.7. Предельные теоремы
- •1.7.1. Локальная теорема Муавра-Лапласа.
- •1.7.2. Интегральная теорема Муавра-Лапласа.
- •2. Базовые понятия математической статистики
- •2.1. Эмпирическая функция распределения
- •2.2. Гистограмма
- •2.3. Оценки параметров распределения и их свойства
- •2.4. Оценки моментов и квантилей распределения
- •2.5. Точечная оценка параметров распределения
- •2.5.1. Сущность задачи точечного оценивания параметров
- •2.5.2. Метод максимального правдоподобия
- •2.5.3. Метод моментов
- •2.5.4. Метод квантилей
- •3. Проверка статистических гипотез
- •3.1. Сущность задачи проверки статистических гипотез
- •3.2. Типовые распределения
- •3.2.1. Нормальное распределение
- •3.2.2. Распределение χ2 (хи-квадрат)
- •3.2.3. Распределение Стьюдента
- •3.3.4. Распределение Фишера
- •3.3. Проверка гипотез о законе распределения
- •3.3.1. Критерий хи-квадрат к. Пирсона
- •3.3.2. Критерий а.Н. Колмогорова
- •3.3.3. Критерий р. Мизеса
- •4. Интервальная оценка параметров распределения
- •4.1. Сущность задачи интервального оценивания параметров
- •4.2. Общий метод построения доверительных интервалов
- •4.3. Доверительный интервал для математического ожидания
- •4.4. Доверительный интервал для дисперсии
- •4.5. Доверительный интервал для вероятности
- •5. Аппроксимация закона распределения экспериментальных данных
- •5.1. Задачи аппроксимации
- •5.2. Аппроксимация на основе типовых распределений
- •6. Обработка однотипных выборок
- •6.1. Однотипные выборки эд и задачи их обработки
- •6.2. Объединение выборок
- •6.2.1. Объединение однородных выборок
- •6.2.2. Объединение неоднородных выборок
- •6.3. Однофакторный дисперсионный анализ
- •6.3.1. Задачи дисперсионного анализа
- •6.3.2. Проверка однородности совокупности дисперсий
- •6.3.3. Сравнение факторной и остаточной дисперсий
- •7. Корреляционный и регрессионный анализ
- •7.1. Матрица данных
- •7.2. Корреляционный анализ
- •7.3. Регрессионный анализ
- •7.3.1. Постановка задачи
- •7.3.2. Выбор вида уравнения регрессии
- •7.3.4. Вычисление коэффициентов уравнения регрессии
3.2.3. Распределение Стьюдента
Распределение Стьюдента (t-распределение, предложено в 1908 г. английским статистиком В. Госсетом, публиковавшим научные труды под псевдонимом Student) характеризует распределение случайной величины
где u0, u1, …, uk взаимно независимые нормально распределенные случайные величины с нулевым средним и конечной дисперсией. Аргумент t не зависит от дисперсии слагаемых. Функция плотности распределения Стьюдента
(3.5)
Величина k характеризует количество степеней свободы. Плотность распределения – унимодальная и симметричная функция, похожая на нормальное распределение, рис. 3.7.
Рис. 3.7. Плотность распределения Стьюдента
Область изменения аргумента t от –∞ до ∞. Математическое ожидание и дисперсия равны 0 и k/(k–2) соответственно, при k>2. По сравнению с нормальным распределение Стьюдента более пологое, оно имеет меньшую дисперсию. Это отличие заметно при небольших значениях k, что следует учитывать при проверке статистических гипотез (критические значения аргумента распределения Стьюдента превышают аналогичные показатели нормального распределения). Таблицы распределения содержат значения для односторонней (пределы интегрирования от r(k;a) до ∞.
или двусторонней (пределы интегрирования от – r(k;a) до r(k;a))
критической области.
Распределение Стьюдента применяется для описания ошибок выборки при k < 30. При k, превышающем 100, данное распределение практически соответствует нормальному, для значений k из диапазона от 30 до 100 различия между распределением Стьюдента и нормальным распределением составляют несколько процентов. Поэтому относительно оценки ошибок малыми считаются выборки объемом не более 30 единиц, большими – объемом более 100 единиц. При аппроксимации распределения Стьюдента нормальным распределением для односторонней критической области вероятность
Р{t > t(k; a)} = u1– a(0, k/(k–2)),
где u1– a(0, k/(k–2)) – квантиль нормального распределения. Аналогичное соотношение можно составить и для двусторонней критической области.
3.3.4. Распределение Фишера
Распределению Р.А. Фишера (F-распределению Фишера – Снедекора) подчиняется случайная величина
х =[(y1/k1)/(y2/k2)],
равная отношению двух случайных величин у1 и у2, имеющих χ2- распределение с k1 и k2 степенями свободы. Область изменения аргумента х от 0 до ∞. Плотность распределения
(3.6)
В этом выражении k1 обозначает число степеней свободы величины y1 с большей дисперсией, k2 – число степеней свободы величины y2 с меньшей дисперсией. Плотность распределения–унимодальная, несимметричная, рис. 3.8.
Рис. 3.8. Плотность распределения Фишера
Математическое ожидание случайной величины Х
m1 = k2/(k2–2) при k2>2,
дисперсия
т2 = [2 k22 (k1+k2–2)]/[k1(k2–2)2(k2–4)] при k2 > 4.
При k1 > 30 и k2 > 30 величина х распределена приближенно нормально с центром распределения (k1 – k2)/(2 k1 k2) и дисперсией (k1 + k2)/(2 k1 k2).
3.3. Проверка гипотез о законе распределения
Обычно сущность проверки гипотезы о законе распределения ЭД заключается в следующем. Имеется выборка ЭД фиксированного объема, выбран или известен вид закона распределения генеральной совокупности. Необходимо оценить по этой выборке параметры закона, определить степень согласованности ЭД и выбранного закона распределения, в котором параметры заменены их оценками. Пока не будем касаться способов нахождения оценок параметров распределения, а рассмотрим только вопрос проверки согласованности распределений с использованием наиболее употребительных критериев.