- •Министерство образования и науки российской федерации
- •Введение Цели, задачи и ресурсы системы защиты информации
- •Лекция № 1
- •Раздел 1 Объекты информационной защиты
- •1.1. Основные свойства информации как предмета инженерно-технической защиты Понятие о защищаемой информации
- •Виды информации, защищаемой техническими средствами.
- •Свойства информации, влияющие на возможности ее защиты.
- •Лекция № 2
- •1.2. Демаскирующие признаки объектов защиты
- •Видовые демаскирующие признаки
- •Лекция № 3
- •1.4. Источники опасных сигналов (начало)
- •Побочные электромагнитные излучения и наводки
- •Лекция № 4
- •1.4. Источники опасных сигналов (окончание) Побочные преобразования акустических сигналов в электрические сигналы
- •Лекция № 5
- •Раздел 2 Угрозы безопасности информации
- •2.1. Виды угроз безопасности информации, защищаемой техническими средствами.
- •Источники угроз безопасности информации
- •Лекция № 6
- •2.2. Органы добывания информации Принципы добывания и обработки информации техническими средствами.
- •Классификация технической разведки
- •Лекция № 7
- •2.5. Основные способы и принципы работы средств наблюдения объектов, подслушивания и перехвата сигналов
- •2.5.1. Способы и средства наблюдения Средства наблюдения в оптическом диапазоне
- •Оптические системы
- •Визуально-оптические приборы
- •Лекция № 8
- •2.5.2. Способы и средства перехвата сигналов. Средства перехвата радиосигналов
- •Антенны
- •Радиоприемники
- •Лекция № 9
- •2.5.3. Способы и средства подслушивания акустических сигналов. Акустические приемники
- •Лекция № 10
- •3.1. Концепция инженерно-технической защиты информации
- •Принципы инженерно-технической защиты информации
- •Принципы построения системы инженерно-технической защиты информации
- •Лекция № 11
- •3.2. Способы и средства инженерной защиты и технической охраны
- •3.2.1. Концепция охраны объектов. Категорирование объектов защиты
- •Характеристика методов физической защиты информации
- •Структура системы инженерно-технической защиты информации
- •Лекция № 12
- •3.2.3. Способы и средства обнаружения злоумышленников и пожара. (начало)
- •Извещатели
- •Лекция № 13
- •3.2.3. Способы и средства обнаружения злоумышленников и пожара. (окончание)
- •Средства контроля и управления средствами охраны
- •Лекция № 14
- •3.2.4. Способы и средства видеоконтроля. Средства телевизионной охраны
- •Средства освещения
- •Лекция № 15
- •3.2.5. Способы и средства нейтрализации угроз.
- •Лекция № 16
- •3.2.6. Средства управления системой охраны.
- •Классификация средств инженерно-технической защиты информации
- •Лекция № 17
- •3.3. Способы и средства защиты информации от наблюдения
- •3.3.1. Способы и средства противодействия наблюдению в оптическом диапазоне волн.
- •Вопросы для самопроверки
- •Лекция № 18
- •3.3.2. Способы и средства противодействия радиолокационному и гидроакустическому наблюдению.
- •Лекция № 19
- •3.4. Способы и средства защиты информации от подслушивания
- •3.4.1. Способы и средства информационного скрытия акустических сигналов и речевой информации.
- •Структурное скрытие речевой информации в каналах связи
- •Лекция № 20
- •3.4.3. Способы и средства предотвращения утечки информации с помощью закладных устройств. Демаскирующие признаки закладных устройств
- •Лекция № 21
- •3.5. Способы и средства предотвращения утечки информации через побочные электромагнитные излучения и наводки Экранирование электромагнитных полей
- •Экранирование электрических проводов
- •Компенсация полей
- •Лекция № 22
- •3.6. Способы предотвращения утечки информации по материально-вещественному каналу
- •Методы защиты информации в отходах производства
- •Методы защиты демаскирующих веществ в отходах химического производства
- •Лекция № 23
- •Лекция № 24
- •4.2. Организационные и технические меры инженерно-технической защиты информации в государственных и коммерческих структурах. Контроль эффективности защиты информации.
- •Основные организационные и технические меры по обеспечению инженерно-технической защиты информации
- •Контроль эффективности инженерно-технической защиты информации
- •Лекция № 25
- •4.2. Организационные и технические меры инженерно-технической защиты информации в государственных и коммерческих структурах. Контроль эффективности защиты информации.
- •Организация инженерно-технической защиты информации на предприятиях (в организациях, учреждениях)
- •Лекция № 26
- •Раздел 5. Основы методического обеспечения инженерно-технической защиты информации
- •5.1. Системный подход к инженерно-технической защите информации. Основные положения системного подхода к инженерно-технической защите информации
- •Лекция № 27
- •5.2. Принципы моделирования объектов защиты и технических каналов утечки информации.
- •Лекция № 28
- •5.3. Моделирование угроз информации. Способы оценки угроз безопасности информации и расходов на техническую защиту.
- •Моделирование каналов несанкционированного доступа к информации
- •Моделирование каналов утечки информации
- •Лекция № 29
- •5.4. Методические рекомендации по разработке мер защиты
- •Общие рекомендации
- •Методические рекомендации по организации физической защиты источников информации
- •Рекомендации по повышению укрепленности инженерных конструкций Рекомендации по повышению укрепленности ограждения периметра предприятия (организации, учреждения)
- •Выбор технических средств охраны
- •Выбор извещателей
- •Лекция № 30
- •5.4. Методические рекомендации по разработке мер защиты
- •Выбор шлейфов
- •Выбор средств наблюдения и мест их установки
- •Основная литература
- •Дополнительная литература
- •Периодические издания
Компенсация полей
Низкочастотные и высокочастотные поля, создаваемые токами в симметричных кабелях, имеют почти равные напряженности и почти противоположные фазы. Побочные излучения проводов симметричных кабелей обусловлены разной удаленностью проводов от точки в пространстве, в которой производится измерение уровня излучения, и разными значения емкостей между проводами и рассматриваемыми токопроводящими поверхностями, в томчисле и землей. Эта разница вызывается разным расположением проводов в пространстве, конструктивными отличиями и неоднородностью материала проводов и их изоляции.
Компенсация полей проводов симметричного кабеля при его прокладке параллельно другим кабелям улучшается путем симметрирования проводов с помощью дополнительных емкостей или размещением жил в многожильном кабеле или жгуте таким образом, чтобы уменьшить их влияние друг на друга. Для этого измеряют емкости между проводами и установкой дополнительных конденсаторов Сс добиваются равенства емкостей между рассматриваемыми проводами (рис. 3.40 а)).
Рис. 3.40. Симметрирование проводов кабелей
Более удобные для симметрирования кабелей так называемые дифференциальные конденсаторы переменной емкости Сдс. (рис. 3.40). Путем вращения регулировочного винта такого конденсатора добиваются минимального уровня индикатора напряженности поля измерительного прибора, установленного в контролируемом месте. Подключение симметрирующих конденсаторов производится в специальных симметрирующих муфтах, которые включаются в разрыв кабеля (для длинных кабелей) или в соединительные разъемы.
При промышленном изготовлении многожильных кабелей предусматривается расположение жил одной группы на одинаковом расстоянии от жил другой группы. Это обстоятельство важно учитывать при монтаже кабеля. Для каждой цепи выбираются жилы, расположенные на равном расстоянии от жил других цепей.
Для компенсации полей, вызванных разной удаленностью проводов от точки пространства, производят скручивание проводов кабеля. Кабель, состоящий из двух скрученных проводов, называетсявитой парой илибифиляром. Повышение компенсации полей разных проводов пары достигается тем, что поле в рассматриваемой точке пространства представляет собой суперпозицию полей не двух параллельных проводов с разным расстоянием от точки измерения, а полей от участков проводов длиной, соответствующей шагу скрутки. Так как после каждой скрутки расположениеучастков проводов по отношению к точке измерения меняется на противоположное (более близкий участок провода становится более удаленным), то происходит существенно более полная компенсация полей от проводов с противоположным направлением тока.Полной компенсации полей добиться не удается, но при достаточно малом шаге скрутки ослабление излучения достигает приемлемых для практики значений, заметно не уступающих более дорогому экранированию. Например, при уменьшении шага скрутки в 3 раза (с 55 до 18 мм) излучающая способность снижается примерно на 30 дБ. Абсолютное значение ослабления излучения витой пары с шагом около 2 мм достигает 80 дБ. Малая излучающая способность, меньшая стоимость и большая гибкость витой пары способствуют ее широкому использованию в качестве кабеля локальных сетей ЭВМ, размещаемых внутри одного здания.
В настоящее время используются неэкранированные кабели с витыми парами из медной проволоки (UTP—UnshildedTwistedPair) и экранированные кабели с витыми парами из медной проволоки (STР —SchildedTwistedPair). Чаще используются кабелиSTР 3-й, 4-й, и 5-й категорий. Кабели 3-й категории обеспечивают скорость передачи до 10 Мбит/с, 4-й категории — до 25 Мбит/с, 5-й категории — до 155 Мбит/с.
Для увеличения ослабления излучения витую пару помещают в экран. Экранированная витая пара эффективна на частотах до 100 кГц, но на частотах более 1 МГц в ней существенно возрастают потери. В качестве экранированной витой пары используют такжескрутку из трех проводов (трифиляр), по двум из которых передаются сигналы, а третий заземляется. Эффективность экранированного кабеля может быть более 100 дБ.