 
        
        Matematika_7_8_k_r
.pdfФедеральное агентство по образованию Государственное образовательное учреждение высшего и профессионального образования šКузбасский государственный технический университетŸ
Кафедра прикладной математики
МАТЕМАТИКА
Программа, контрольные работы № 7, 8 и методические указания по их выполнению для студентов заочной формы обучения инженерно-технических специальностей 2 курса
Составители Е. А. Волкова И. А. Ермакова Е. В. Прейс
Утверждены на заседании кафедры Протокол № 7 от 22.03.2007 Рекомендованы к печати учебно-методической комиссией специальности 230401 Протокол № 5 от 2.04.2007
Электронная копия находится в библиотеке главного корпуса ГУ КузГТУ
Кемерово 2007
Выбор номеров задач контрольных работ
| 
 | 0 | 1 | 
 | 2 | 
 | 3 | 
 | 4 | 
 | 5 | 
 | 6 | 
 | 7 | 8 | 9 | 
 | 
| А,В,Д | 1 37 75 | 2 38 76 | 3 39 77 | 4 40 78 | 5 41 79 | 6 42 80 | 7 43 81 | 8 44 82 | 9 45 83 98 | 10 46 | 84 | ||||||
| 
 | 120 | 91 | 
 | 92 | 
 | 93 | 
 | 94 | 
 | 95 | 
 | 96 | 
 | 97 | 
 | 99 | 
 | 
| Б,Е,З | 11 47 85 | 12 48 | 86 | 13 49 | 87 | 14 50 | 88 | 15 51 | 89 | 16 52 | 90 | 17 53 | 91 | 18 54 92 | 19 55 93 | 20 56 | 64 | 
| 
 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | |||||||
| Г,Ж, | 21 57 65 | 22 58 | 66 | 23 59 | 67 | 24 30 | 68 | 25 31 | 69 | 26 32 | 70 | 27 33 | 71 | 28 34 72 | 29 35 73 | 30 36 | 74 | 
| И,Л | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | |||||||
| К | 1 38 75 | 2 39 76 | 3 40 77 | 4 41 78 | 5 42 79 | 6 43 80 | 7 44 81 | 8 45 82 | 9 46 83 98 | 10 47 | 84 | ||||||
| 
 | 120 | 91 | 
 | 92 | 
 | 93 | 
 | 94 | 
 | 95 | 
 | 96 | 
 | 97 | 
 | 99 | 
 | 
| М,Н, | 11 49 85 | 12 48 | 86 | 13 50 | 87 | 14 51 | 88 | 15 52 | 89 | 16 53 | 90 | 17 54 | 61 | 18 55 62 | 19 56 63 | 20 57 | 64 | 
| О | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | |||||||
| П,Х,Ц | 21 58 65 | 22 59 | 66 | 23 60 | 67 | 24 60 | 68 | 25 39 | 69 | 26 31 | 70 | 27 32 | 71 | 28 33 72 | 29 34 73 | 30 35 | 74 | 
| ,Ш | 110 | 117 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | |||||||
| С,У,Ё, | 1 36 75 | 2 37 76 | 3 38 77 | 4 40 78 | 5 41 79 | 6 42 80 | 7 43 81 | 8 44 82 | 9 45 83 98 | 10 46 | 84 | ||||||
| Ы,Й | 91 | 92 | 
 | 93 | 
 | 94 | 
 | 95 | 
 | 96 | 
 | 97 | 
 | 120 | 
 | 99 | 
 | 
| Р,Т,Ф | 21 57 65 | 22 58 | 66 | 23 59 | 67 | 24 60 | 68 | 25 36 | 69 | 26 31 | 70 | 27 32 | 71 | 28 33 72 | 29 34 73 | 30 35 | 74 | 
| 
 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | |||||||
| Ч,Щ,Э | 11 47 85 | 12 48 | 86 | 13 49 | 87 | 14 50 | 88 | 15 51 | 89 | 16 52 | 90 | 17 53 | 61 | 18 54 62 | 19 55 63 | 20 56 | 64 | 
| ,Ю,Я | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | |||||||
Контрольные работы № 7, 8 составлены в соответствии с программой курса математики для студентов заочной формы обучения инженерно-технических специальностей. В составлении работ и методических указаний к ним принимали участие преподаватели: В. М. Волков, Е. А. Волкова, В. А. Гоголин, И. А. Ермакова, Е. В. Прейс, С. М. Швыдко.
Номера задач контрольных работ студент должен выбрать по таблице šВыбор номеров контрольных задачŸ следующим образом:
найти строку, соответствующую первой букве фамилии;
найти столбец, соответствующий последней цифре шифра;
на пересечении найденных строки и столбца взять номера задач контрольных работ № 7, 8.
Контрольные работы, выполненные не по своему варианту, возвращаются непроверенными.
ПРОГРАММА
курса šМатематикаŸ для инженерно-технических специальностей (III семестр)
1. Неопределённый интеграл
1.1.Первообразная (неопределённый интеграл), её свойства. Таблица интегралов.
1.2.Непосредственное интегрирование. Интегрирование по частям и подстановкой.
1.3.Использование таблиц (справочников) неопределённых интегралов.
2. Определённый интеграл
2.1.Задачи, приводящиеся к понятию определённого инте-
грала.
2.2.Определённый интеграл как предел интегральных сумм.
2.3.Основные свойства определённого интеграла.
2.4.Производная интеграла по переменному верхнему пределу. Формула Ньютона-Лейбница.
3. Криволинейные интегралы
3.1.Задачи, приводящиеся к криволинейным интегралам.
3.2.Определение криволинейных интегралов по длине дуги
ипо координатам, их основные свойства и вычисление.
3.3.Приложение интегралов к вычислению масс неоднородных линий и работы переменной силы.
4. Кратные интегралы 4.1.Задачи, приводящиеся к понятию двойного интеграла,
его определение и свойства.
4.2.Вычисление двойных интегралов в декартовых и полярных координатах.
4.3.Применение двойных интегралов для вычисления площадей, решения задач механики и физики.
5. Обыкновенные дифференциальные уравнения
5.1.Задачи, приводящиеся к дифференциальным уравнениям. Основные определения.
5.2.Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши.
5.3.Интегрирование простейших типов дифференциальных уравнений: с разделяющимися переменными, однородных и линейных.
5.4.Дифференциальные уравнения второго порядка. Задача Коши. Уравнения, допускающие понижение порядка.
5.5.Линейные дифференциальные уравнения с постоянными коэффициентами.
5.6.Применение дифференциальных уравнений для решения задач физики и механики.
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНЫМ РАБОТАМ
Контрольная работа № 7
Для вычисления неопределённых интегралов № 1-30 необходимо проработать литературу: [1, гл.7, с. 285-312; 3, гл.5, с. 253286; 6, гл.4, с. 154-183; 7, гл.9, с. 225-286], где содержатся практические рекомендации по данной теме.
 
Для выполнения задания 1-30 (пункт а) нужно из таблицы интегралов выбрать такой, к которому можно свести данный интеграл.
Например, при вычислении
| 
 | 
 | dx | 
 | 5x 2 | 5 | dx | |
| 
 | 
 | 3 | |||||
| 
 | 
 | 
 | |||||
| 3 5x 2 5 | |||||||
| 
 | 
 | 
 | 
 | 
 | |||
используем табличный интеграл
undu un 1 c . n 1
Согласно этой формуле подводим под знак дифференциала основание степени. Так как d 5x 2 5dx , то умножим и разделим интеграл на 5, то есть
| 
 | 
 | 
 | 
 | 
 | dx | 
 | 
 | 
 | 5 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 5 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5x 2 | 
 | 3 dx | 
 | 5x | 2 | 3 | 
 | 5dx | 
 | 5x | 2 | 
 | 3 d 5x 2 | |||||||||||||||
| 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 5 | |||||||||||||||||||||||||||
| 5x 2 5 | 
 | |||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 1 | 
 | 5x 2 | 
 | 
 | 1 | 
 | 3 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 3 | 
 | 5x 2 | 
 | 
 | 
 | 
 | c . | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | c | 3 c | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| 5 | 
 | 5 | 1 | 
 | 10 | 
 | 103 5x 2 2 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | Интеграл | x e3x 2 1dx | сводится | 
 | к | 
 | табличному | eudu eu c | |||||||||||||||||||||||||
путём подведения под знак дифференциала показателя степени d 3x2 1 6xdx . Таким образом
| x e3x | 2 | 1dx | 1 | e3x | 2 | 1 | 6xdx | 1 | e3x | 2 | 1d 3x2 | 1 | 1 | 
 | e | 3x | 2 | 1 c . | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 6 | 
 | 6 | 
 | 6 | 
 | |||||||||||||||||||||
| В примере | 3cosx dx | используем | формулу | du | ln | 
 | u | 
 | c , где | |||||||||||||||||||
| 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 2 sin x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
под знаком дифференциала находится знаменатель дроби. Так
как d 2 sin x cosxdx , то
| 3 | cosxdx | 3 | d 2 sin x | 3 ln | 
 | 2 sin x | 
 | c . | |
| 
 | 
 | ||||||||
| 2 sin x | 2 sin x | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
При вычислении интегралов в пункте б) применяются методы подстановки и интегрирования по частям, то есть по формулеudv uv vdu мы от исходного интеграла udv переходим к более простому vdu .
Пример. x arctgxdx arctgx xdx , то есть возьмём
| 
 | dx | 
 | 
 | 
 | 
 | |
| u arctgx du | 
 | 
 | , | 
 | 
 | |
| 1 x | 2 | |||||
| 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | x2 | |||
| dv xdx v dv xdx | . | |||||
| 
 | ||||||
| 
 | 
 | 
 | 2 | 
 | ||
| 
 | 
 | 
 | 
 | |||
(здесь при нахождении v константу c полагаем равной 0). Получим
| 
 | 
 | 
 | 
 | 
 | x arctgxdx arctgx xdx | x2 | 
 | arctgx | 1 | x2 | 
 | 
 | 
 | 
 | dx | . | |||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dx | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 1 x2 | 
 | |||||||||||||
| 
 | Возьмём | x2 | 
 | отдельно | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 
 | 1 x2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| x2 | 
 | dx | 
 | 
 | 
 | x2 1 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dx | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dx | 
 | 1 | 
 | 
 | 
 | 
 | 
 | dx dx | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x arctgx c | ||||||||||||||||||||||
| 1 x | 
 | 
 | x2 1 | 
 | 
 | 
 | 
 | 
 | 1 x2 | 
 | |||||||||||||||||||||||||||||||||||||||||||
| . | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 x2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| Итак | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x arctgxdx | 
 | arctgx | 1 | x arctgx c . | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | Пример. Найти | x e 3xdx . Пусть | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | u x du dx, | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3x | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 3x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 3x | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d 3x | 
 | 
 | . | |||||||||||||||||||||||||||
| 
 | 
 | 
 | dv e | 
 | 
 | 
 | 
 | dx v e | 
 | 
 | 
 | 
 | 
 | dx | 
 | 
 | 
 | e | 
 | 
 | 
 | 
 | e | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 3 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||
| 
 | 
 | 3x | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 3x | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 3x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | xe 3x | 
 | 
 | 1 | 
 | 
 | 3x | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| x e | 
 | dx x | 
 | 
 | 
 | e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | e | 
 | 
 | dx | 
 | 
 | 
 | 
 | 
 | 
 | e | 
 | 
 | 
 | dx | 
 | |||||||||||||||||||||||
| 
 | 3 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 3 | 3 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | xe 3x | 
 | 
 | e 3x | 
 | c . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
39
 
| Пример. При вычислении интеграла I | 2 | x 1 | dx сделаем | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| подстановку u | 
 | 
 | 
 | 
 | 
 | 
 | u2 x 1 x u2 | 
 | 
 | 
 | 
 | 
 | 
 | x 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | x 1 | 1 dx 2udu, | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||
| x 3 u2 1 3 u2 | 2 . Получим | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2u u 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | dx | 
 | 2 u | 
 | 2udu 2 | du . | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||
| 
 | 
 | I | 
 | x 1 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u2 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||
| 
 | 2u u2 | 
 | 
 | 
 | 
 | 
 | x 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u2 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| Дробь | неправильная (степень числителя не меньше сте- | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| u 2 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| пени знаменателя). Выделим целую часть | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | u2 2 2 2u | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2u | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u2 2 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u2 2 u 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| Итак I 2 | 2u u | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2du | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2udu | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | u | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | du 2 du | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2u | 
 | 
 | 
 | 
 | arctg | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | u 2 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u 2 2 | 
 | u2 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 2 | 
 | |||||||||||||||||||||||||
| 2 ln u2 2 c 2 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | arctg | 
 | x 1 | 
 | 2 ln | 
 | x 3 | 
 | c . | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||
| 
 | x 1 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | du | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| Здесь du и | 
 | табличные, а | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| u2 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2udu | d u2 2 | ln u 2 2 c . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | u2 2 | 
 | u2 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
Для нахождения площадей плоских фигур и объёмов тел вращения в задачах № 31-60 рекомендуется изучить литературу [1, гл.8, с. 340-344, 347; 3, гл.6, с. 340-346; 4, гл.12, с. 416-418, 426; 6, гл.5, с. 189, 199; 7, гл.10, с. 269-271].
При вычислении интегралов в этих задачах и в дальнейшем можно пользоваться таблицей интегралов в справочниках [10, с. 841-851; 11, с. 114-156].
Пример. Найти площади частей, на которые круг x2 y2 12
делится параболой y x2 .
Сделаем схематический чертёж (рис.1) и найдём точки пересечения этих линий
 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | y | 2 | 12 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 12 y | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 12 y2 y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 1 7 | , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y2 y 12 0 | 
 | 
 | 
 | 
 | 1 48 | 
 | 
 | y 3. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | В точке пересечения x2 3 x1 | 
 | 
 | , x2 | 
 | 
 | . Площадь мень- | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 3 | 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| шей части | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 3 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | x | 
 | ||||||||||||||||||||
| S1 | 
 | 
 | 12 x | 2 | 
 | dx | 
 | x | 2 | dx | 12 | x | 2 | 
 | 6 arcsin | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 3 6 arcsin | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 3 6 arcsin | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 
 | 
 | 
 | 
 | 12 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 3 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 3 12 | 
 | 
 | 
 | 
 | 2 3 | 
 | 
 | 3 2 . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||
| 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y x 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y x | 
 | 
 | 
 | 
 | 
 | 
 | ||
x
x
x 2 y 2 12
| Рис.1 | Рис.2 | 
При вычислении интеграла 
 12 x2 dx мы воспользовались справочником [10] (интеграл № 51) или [11] (интеграл № 157).
12 x2 dx мы воспользовались справочником [10] (интеграл № 51) или [11] (интеграл № 157).
Площадь большей части
S2 r 2 S1 12 
 3 2 10
3 2 10 
 3 .
3 .
Пример. Найти объём тела, образованного вращением во-
| круг | оси | OX | фигуры, | ограниченной | линиями | ||||||||
| y x, | y x | 
 | , | 0 x . | 
 | 
 | 
 | 
 | 
 | ||||
| sin x | 
 | 
 | 
 | 
 | 
 | ||||||||
| Сделаем схематический чертёж (рис.2) и найдём точки | |||||||||||||
| пересечения этих линий | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| y x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | x x sin x 0, x1 0, 1 | sin x 0, sin x 1, x2 | 
 | . | |||||||||
| 
 | 
 | ||||||||||||
| 
 | 
 | ||||||||||||
| 
 | |||||||||||||
| y x | sin x | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | ||||
 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| V V1 | b | b | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 2 sin xdx | ||||||
| V2 y12dx y22dx x | 2dx x | |||||||||||||||||
| 
 | 
 | 
 | a | a | 0 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | ||||||
| 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | x | 
 | 2x sin x x2 2 cosx | 
 | 
 | 
 | 
 | 
 | 
 | 2 , | ||||||||
| 
 | 
 | 
 | 
 | |||||||||||||||
| 3 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 24 | 
 | 
 | 
 | 
 | |||||
| x2 sin xdx 2x sin x x2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 2 cosx. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
При нахождении длины дуги в задачах № 31-60 и массы неоднородной линии в задачах № 61-90 следует помнить, что дифференциал длины дуги выражается различными формулами [1, гл.8, с. 347-352; 4, гл.12, с. 432-436; 7, гл.10, с. 270].
1) ds 
 1 yx 2 dx , если линия задана в декартовых координатах;
1 yx 2 dx , если линия задана в декартовых координатах;
| 2) ds | xt 2 yt 2 dt , если линия задана параметрически | |
| x x t , | y y t ; | |
3) ds 
 r 2 r 2 d , если линия задана в полярных координатах r r .
r 2 r 2 d , если линия задана в полярных координатах r r .
| Пример. Найти длину дуги кривой r cos2 | 
 | 
 | , | 0 | 
 | . | |||||||||||
| 2 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | ||
| Вычисляем | ds | r 2 | r | 2 | d , r 2cos | sin | . | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 2 | 
 | 
 | 
 | |||
| 
 | r | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| r2 | 
 | cos4 | 
 | 
 | cos2 | 
 | 
 | 
 | sin | 2 | 
 | 
 | 
 | cos | 2 | 
 | 
 | 
 | cos2 | 
 | 
 | 
 | sin2 | 
 | 
 | 
 | cos | 2 | 
 | , | |||||||||||||||||
| 2 | 2 | 
 | 
 | 2 | 
 | 2 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | ||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ds | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | d cos | 
 | d , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 . | 
 | 
 | 
 | ||||||||||||||||||
| 
 | S cos | 
 | 
 | d 2sin | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 sin | 
 | 
 | sin 0 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 0 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
Пример. Найти массу участка линии
 
x a t sin t ,
L: 0 t 2 , если плотность 3y .
y a 1 cos t ,
m ds .
L
| Найдём ds | xt 2 yt 2 dt , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | xt a 1 cos t , | 
 | yt a sin t , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | a 2 1 cos t 2 | a 2 sin2 t dt a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dt | |||||||||||||||||||||||||||||
| ds | 
 | 
 | 1 2cos t cos2 t sin2 t | ||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2a sin | t | 
 | dt . | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dt a | 
 | 
 | 
 | 
 | 
 | 
 | 2sin2 | t | 
 | dt | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 2 2cos t | 2 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 2 | 
 | 
 | |||||||
| 
 | 3a 1 cos t 2a sin | t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | t | 
 | t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | t | 
 | ||||||||||||||||||||
| m | 
 | dt 6a 2 | 
 | 
 | 2sin2 | sin | dt | 12a 2 | sin3 | dt | |||||||||||||||||||||||||||||||||||
| 
 | 
 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||
| 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | t | 
 | 1 | 
 | 
 | 
 | 
 | 
 | t | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 12a 2 | 2cos | 
 | 
 | 
 | 
 | 2 cos3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12a 2 2 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 32a 2 . | ||||||||||||||||||||
| 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | |||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | sin3 | t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | dt | взяли по справочнику [10] (интеграл № 106) или | |||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
[11] (интеграл № 276).
При решении задач № 91-120 необходимо изучить криволинейные интегралы второго рода (по координатам) и их вычисление в зависимости от задания пути интегрирования [2, с. 82-89; 3, с. 472-479; 5, с. 217-226].
| Пример. | Вычислить | работу, | совершаемую | силой | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
| F x2 2xy i y2 2xy j при перемещении некоторой массы по | |||||
| дуге параболы y x2 от точки A(1,1) о точки B(-1,1). | 
 | ||||
| Составляем криволинейный интеграл | 
 | 
 | |||
| A | x2 | 2xy dx y2 2xy dy . | 
 | 
 | |
| 
 | AB | 
 | 
 | 
 | 
 | 
| Так как y x2 , то y 2x, | dy 2xdx , и при движении массы из | ||||
точки A точку B x принимает значения от 1 до -1, которые и будут пределами интегрирования по одной переменной x . Следовательно, имеем
