Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / toe_lekcii / 5_Лекции_по_ТОЭ_20-и тд.doc
Скачиваний:
139
Добавлен:
30.04.2013
Размер:
3.82 Mб
Скачать

Корни характеристического уравнения. Постоянная времени

Выражение свободной составляющей общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).

 

Таблица 3. Выражения свободных составляющих общего решения

Вид корней характеристического уравнения

   Выражение свободной составляющей

Корни вещественные и различные

                  

Корни вещественные и

      

Пары комплексно-сопряженных корней

Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.

При вещественных корнях монотонно затухает, и имеет местоапериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).

Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением

,

которое называется декрементом колебания, или натуральным логарифмом этого отношения

,

называемым логарифмическим декрементом колебания,где.

Важной характеристикой при исследовании переходных процессов является постоянная времени t, определяемая для цепей первого порядка, как:

,

где р – корень характеристического уравнения.

Постоянную времени можно интерпретировать как временной интервал, в течение которого свободная составляющая уменьшится в е раз по сравнению со своим начальным значением. Теоретически переходный процесс длится бесконечно долго. Однако на практике считается, что он заканчивается при

.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

  2. Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Контрольные вопросы

  1. Чем обусловлены переходные процессы?

  2. Как определяется порядок дифференциального уравнения, описывающего переходный процесс?

  3. Для каких цепей применим классический метод расчета переходных процессов?

  4. Доказать законы коммутации: и- с энергетических позиций.

  5. В каких цепях и почему возможен колебательный процесс?

  6. Определить величину токов и напряженийна конденсаторе ина катушке индуктивности  в момент коммутации в цепи на рис. 4, если.

Ответ: ;.

Соседние файлы в папке toe_lekcii