
- •Федеральное государственное автономное образовательное учреждение
- •1. Введение
- •2 Общие сведения
- •2.1 Характеристика транспортируемых грузов
- •2.2 Классификация машин непрерывного транспорта
- •2.3 Основные критерии выбора типа транспортирующей машины
- •2.4 Режимы работы, классы использования и условия эксплуата-
- •3. Общее устройство конвейеров с тяговым элементом. Конструкции основных узлов.
- •3.1 Тяговые элементы конвейеров,
- •3.1.1 Тяговые цепи
- •3.1.2 Конвейерные ленты.
- •3.2 Опорные, поддерживающие и направляющие устройства
- •3.3 Приводы конвейеров
- •3.4 Натяжные устройства
- •5. Ленточные конвейеры
- •5.1 Устройство ленточных конвейеров общего назначения, типы и
- •5.2 Роликоопоры.
- •5.3 Приводные устройства
- •Мощность приводных блоков выбирается из стандартного ряда: 200, 250, 320, 500, 630, 800, 1000, 1250, 1500 кВт.
- •5.4 Узлы конвейеров
- •5.5 Расчет ленточных конвейеров
- •5.5 Ленточные конвейеры специальных типов
- •6. Пластинчатые конвейеры
- •6.1 Пластинчатые конвейеры общего назначения
- •6.2 Пластинчатые конвейеры специального назначения
- •6.3 Эскалаторы
- •7. Скребковые конвейеры
- •7.1 Конвейеры со сплошными высокими скребками
- •7.2 Конвейеры со сплошными низкими скребками
- •7.3 Конвейеры с контурными скребками
- •7.4 Трубчатые скребковые конвейеры
- •8. Скребково-ковшовые, ковшовые и люлечные конвейеры
- •8.1 Основные типы, устройство, назначение и применение
- •8.2 Скребково-ковшовые конвейеры
- •8.3 Ковшовые конвейеры
- •8.4 Люлечные конвейеры
- •9. Подвесные конвейеры
- •9.1 Классификация, принцип действия
- •9.2 Подвесные грузонесущие конвейеры.
- •9.3 Подвесные грузотолкающие конвейеры
- •9.4 Подвесные несуще-толкающие конвейеры
- •9.5 Подвесные грузоведущие конвейеры
- •9.6 Подвесные несуще-грузоведущие конвейеры
- •10. Тележечные грузоведущие конвейеры
- •10.2 Грузоведущие конвейеры
- •11. Элеваторы
- •11.1 Ковшовые элеваторы
- •11.2 Способы загрузки и разгрузки
- •11.3 Особенности расчета ковшового элеватора
- •11.2 Люлечные и полочные элеваторы
- •12. Подвесные канатные дороги
- •12.1 Общее устройство, классификация
- •12.2 Основные элементы подвесных канатных дорог
- •12.2.1 Одноканатные грузовые подвесные дороги
- •12.3 Двухканатные грузовые подвесные дороги
- •12.4 Пассажирские подвесные канатные дороги
- •12.4 Элементы пкд и подвижной состав
- •12.6 Последовательность расчета и конструирования подвесных канатных дорог
- •Список литературы
11.2 Способы загрузки и разгрузки
Ковшовые элеваторы классифицируют по способу наполнения и разгрузки ковшей, типу ковшей и их расположению на тяговом элементе. От особенностей процессов наполнения ковшей зависят их форма, расположение на тяговом органе и скорость движения.
Загрузка ковшей производится зачерпыванием груза из нижней части кожуха или засыпанием груза в ковши, разгрузка в зависимости от скорости элеватора бывает центробежной, свободной и самотечной направленной (рис. 11.4). Наполнение ковшей зачерпыванием характерно для высокоскоростных ленточных и цепных элеваторов с расставленными ковшами и применяется для мелко- и среднекусковых малоабразивных материалов, при зачерпывании которых при повышенной скорости не возникает значительных сопротивлений.
Непосредственное засыпание в ковши применяется для крупнокусковых абразивных грузов из-за возможности отрыва ковшей и больших сопротивлений движению. Непосредственная загрузка из загрузочного носка в ковши характерна для среднескоростных и тихоходных элеваторов с сомкнутым расположением ковшей.
Центробежная разгрузка характерна для быстроходных элеваторов (1–5 м/с) с расставленными ковшами для транспортирования легкосыпучих грузов. Свободная самотечная (гравитационная) разгрузка применяется для плохо сыпучих или влажных грузов у тихоходных элеваторов при скорости движения ковшей 0,4–0,8 м/с. Свободная направленная (смешанная) разгрузка используется для наклонных и вертикальных тихоходных элеваторов (ленточных и цепных) с сомкнутыми ковшами для транспортирования кусковых, абразивных или хрупких грузов.
Определение полюсного расстояния. На насыпной груз, находящийся в ковше, при перемещении вокруг приводного барабана (звездочки) действуют сила тяжести G и центробежная сила F (рис. 11.5), а также реакции стенок ковша.
Рис. 11.4. Схемы загрузки и разгрузки ковшовых элеваторов:
а– загрузка зачерпыванием, разгрузка под действием центробежной силы;
б– загрузка засыпанием в ковши, разгрузка самотечная направленная;
в– самотечная свободная разгрузка;г– центральная разгрузка
Рис. 11.5. Схема для определения полюсного расстояния ковшового элеватора
На восходящей ветви элеватора ковш движется прямолинейно и равномерно, груз в ковше находится под действием силы тяжести G, при повороте ковша вокруг оси барабана начинает действовать центробежная сила F. Равнодействующая R сил G и F при вращении ковша изменяется по величине и направлению и пересекается с вертикалью, проведенной через центр барабана О, в точке Р – эта точка называется полюсом разгрузки, а расстояние ℓп от нее до точки О – полюсным расстоянием.
Полюсное расстояние определяется по формуле
,(11.1)
где r – расстояние от центра массы насыпного груза до центра барабана, м.
При G = mg
,(11.2)
где m – масса насыпного груза;
g – ускорение свободного падения;
v – окружная скорость точки b (v = ω r).
Для определения полюсного расстояния также используют формулу
ℓп = 895 / n2 , (11.3)
где n – число оборотов барабана (звездочки), мин-1.
При равномерном вращении полюсное расстояние ℓп – величина постоянная при любом положении ковша, она зависит только от частоты вращения барабана.
С увеличением частоты вращения барабана полюсное расстояние уменьшается, центробежная сила возрастает и становится больше силы тяжести. При ℓп ≤ rб (когда полюс находится внутри окружности барабана) (рис. 11.6, в) происходит центробежная разгрузка.
При уменьшении частоты вращения барабана полюсное расстояние увеличивается. При ℓп > rб (когда полюс находится вне окружности) сила тяжести больше центробежной силы, происходит самотечная (гравитационная) разгрузка ковшей (рис. 5.6, а).
При rб < ℓп ≤ rн происходит смешанная (центробежная и гравитационная) разгрузка ковшей (рис. 11.6, б).
У тихоходных элеваторов полюсное расстояние ℓп больше радиуса rн наружных кромок ковшей, у быстроходных – меньше радиуса rб барабана.
Характер разгрузки ковшей определяется не абсолютным значением скорости их движения, а соотношением между этой скоростью и диаметром барабана, т. е. соотношением между полюсным расстоянием и радиусом барабана
Б = ℓп / rб. (11.4)
При небольшой скорости и малом диаметре барабана можно обеспечить центробежную разгрузку ковшей, и наоборот, при большой скорости и увеличенном диаметре барабана разгрузка будет самотечной.
а б в
Рис. 11.6. Схема сил, действующих при самотечной (а),
смешанной (б), центробежной (в) разгрузках
Для высокоскоростного элеватора с центробежной разгрузкой
Б ≤ 1; Dб = 2Бv2 / g ≤ 0,204v2. (11.5)
Для быстроходного элеватора с центробежной и самотечной (смешанной) разгрузкой
Б = 1–4; Dб = (0,205–0,286) v2. (11.6)
Для среднескоростного элеватора с центробежной и самотечной (смешанной) разгрузкой
Б = 1,5–3; Dб = (0,306–0,126) v2. (11.7)
Для тихоходного элеватора с самотечной разгрузкой
Б > 3; Dб ≥ 0,6 v2. (11.8)
Геометрия движения потока груза на разгрузке позволяет конструктивно определить контуры головки кожуха и шаг ковшей на тяговом органе для обеспечения равномерного потока разгружаемого груза без ударов частиц о стенки кожуха, крошения и пыления.
Нории – специальные ковшовые элеваторы для вертикального транспортирования зерна и муки на мукомольных и комбикормовых предприятиях и зернохранилищах, которые имеют специфические конструктивные особенности, их основные параметры обусловлены ГОСТ 10190-70.