
Лекция 8. Индексы
Индексом называется относительная величина, которая характеризует изменение явления во времени или пространстве, а также степень выполнения плана.
Индексы получают в результате сравнения двух величин. При этом если сравнивается какая-то часть явления, то получаем индивидуальный индекс (i), если явление в целом, и при этом сопоставляются сложные показатели, то получаем общий (агрегатный) индекс (I):
;
.
Агрегатные и средневзвешенные индексы
Для построения общих индексов несопоставимые показатели необходимо сделать сопоставимыми. Это достигается путём приведения к стоимости, затратам и некоторым другим сопоставимым показателям.
Между индексами всегда имеет место та же зависимость, что и между показателями, которые они выражают: pq = p ∙ q, следовательно, Ipq = Ip ∙ Iq.
Разница между числителем и знаменателем индекса – есть абсолютное изменение явления в целом или его части, которую этот индекс выражает:
Взаимосвязь:
pq
=
p
+
q
=
pqp
+
pqq.
Правило построения индекса
В составе любого индекса можно выделить всегда и с любой степенью полноты два фактора – количественный и качественный.
Природа первого очевидна, он поддается непосредственному учету и подсчету
Качественный фактор определяется человеком, исходя из его нужд и потребностей, он не ощущаем органами чувств, его величина определяется в результате тех или иных расчетов.
По
методике, принятой в отечественной
статистике, при индексировании
качественных показателей (цены,
себестоимости, производительности
труда) количественные берутся в отчётном
периоде в числителе и знаменателе
индекса, а при индексировании количественных
показателей (объёма, трудозатрат)
качественные берутся в базисном периоде:
;
,
.
Такие общие индексы, как правило, называются индексами Пааше. В зарубежной статистике используются индексы Ласпейреса, где показатели фиксируются наоборот.
Агрегатные индексы, имеющие форму средних из индивидуальных(средневзвешенные)
Если нам известны некоторые данные о стоимости товара отчётного и базисного периодов, об изменении цен этих товаров в отчётном году по сравнению с базисным, изменение объёма в отчётном периоде по сравнению с базисным:
Пример.
Даны следующие данные
;
;
.
Найти:
,
Решение:
,
;
,
;
;
.
Агрегатный индекс переходит в форму средневзвешенного, если в нем используется индивидуальный индекс.
Средневзвешенный индекс качественного фактора, в котором индивидуальный индекс используется как делитель, носит название средневзвешенного гармонического.
Средневзвешенный индекс количественного фактора, в котором индивидуальный индекс используется в качестве сомножителя, называется средневзвешенным арифметическим.
Цепные и базисные индексы
Цепные
индексы – отношение любого явления
текущего периода к предыдущему:
.(
;
;
)
Базисные индексы – отношение любого явления текущего периода к базисному:
.
(
;
;
)
Индексы постоянного, переменного состава и структурных сдвигов
Индексом постоянного состава называется индекс, рассчитанный с весами, зафиксированными на уровне одного какого-либо периода, и показывающий изменение только индексируемой величины, причём среднее изменение (изменение всреднем) индексируемой величины (т.е. рассматриваемой части явления):
−общий
индекс (цены), индекс постоянного состава
или агрегатный индекс (цены), индекс
(общий) цены.
Индексом переменного состава называется индекс, характеризующий соотношение средних уровней изучаемого явления в разные периоды времени и показывающий изменение среднего уровня явления (изменений средней цены):
−средней
цены;
− среднего объёма.
Индекс
структурных сдвигов – индекс,
характеризующий влияние изменения
структуры изучаемого явления на динамику
среднего уровня этого явления: .
Между
данными индексами существует взаимосвязь:
;
Замечание.
Эти индексы рассчитываются только для одноимённых показателей, если они даны для двух и более объектов за два периода времени, или они могут рассчитываться для нескольких видов товаров на одном предприятии.
Индексы динамики и выполнения плана
−индекс
динамики;
− индекс выполнения плана.
Классификация индексов по названию
;
− индексы товарооборота;
;
− индексы затрат на производство;
;
− индексы себестоимости;
;
− индексы трудоёмкости;
;
− индексы физического объёма;
;
− индексы цены;
;
− индексы производительности труда в
трудовой форме;
;
− в стоимостной форме, где
i – индивидуальный индекс;
I – общий индекс;
p – цена;
q – физический объём;
t – трудоёмкость;
T – суммарные затраты времени;
w – производительность труда;
z – себестоимость единицы продукции;
zq – затраты на производство;
pq – объём произведённой продукции, товарооборот;
q0 – физический объём в базисном периоде;
q1 – физический объём в отчётном периоде.
Индексы сложных экономических явлений
Система взаимосвязанных индексов даёт возможность провести факторный анализ, т.е. определить влияние ряда факторов на изменение результативного показателя (в абсолютном или относительном выражении).
Обозначим через Y объём продукции, произведённой предприятием за год;
через a – среднесписочную численность работников;
через b – среднее число дней, отработанных одним работником за год;
через c – среднюю продолжительность рабочего дня в часах;
через d – среднечасовую выработку одного работника в рублях.
По имеющимся данным составим модель сложного экономического явления, результат которого зависит от нескольких факторов: Y = a ∙ b ∙ c ∙ d.
–этот
индекс показывает изменение результативного
показателя за счет всех факторов в
относительном выражении.
–разница
между числителем и знаменателем данного
индекса показывает изменение
результативного показателя в абсолютном
выражении (за счет всех факторов).
Метод цепных подстановок показывает как происходит изменение за счет всех факторов и за счет каждого отдельного фактора.
Относительные изменения (схема обособленного разложения):
Абсолютные изменения:
Этот метод применяется в экономическом анализе.