Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Вопросы - Ответы Программирование

.pdf
Скачиваний:
25
Добавлен:
01.05.2015
Размер:
1.75 Mб
Скачать

следующие действия:

1.Из множества всех белых вершин выберем любую вершину, обозначим её v1.

2.Выполняем для нее процедуру DFS(v1).

3.Перекрашиваем ее в черный цвет.

4.Повторяем шаги 1-3 до тех пор, пока множество белых вершин не пусто.

Процедура DFS (параметр — вершина )

1.Перекрашиваем вершину u в серый цвет.

2.Для всякой вершины w, смежной с вершиной u, выполняем следующие два шага:

1.Если вершина w окрашена в белый цвет, выполняем процедуру DFS(w).

2.Окрашиваем w в черный цвет.

С++

vector < vector<int> > graph;

vector<bool> used;

void dfs(int node_index)

{

used[node_index] = true;

for (vector<int>::iterator i = graph[node_index].begin(); i != graph[node_index].end(); ++i)

{

if ( !used[*i] ) dfs(*i);

}

}

Поиск в ширину (BFS, Breadth-first search) —

метод обхода и разметки вершин графа.

Поиск в ширину выполняется в следующем порядке: началу обхода s приписывается метка 0, смежным с ней вершинам — метка 1. Затем поочередно рассматривается окружение всех вершин с метками 1, и каждой из входящих в эти окружения вершин приписываем метку 2 и т. д.

Если исходный граф связный, то поиск в ширину пометит все его вершины. Дуги вида (i, i+1) порождают остовный бесконтурный орграф, содержащий в качестве своей части остовное ордерево, называемое поисковым деревом.

Легко увидеть, что с помощью поиска в ширину можно также занумеровать вершины, нумеруя вначале вершины с меткой 1, затем с меткой 2 и т. д.

Реализация

Поиск в ширину реализуется с помощью структуры очередь. Для этого занесем в очередь исходную вершину. Затем будем работать, пока очередь не опустеет, таким образом: выберем элемент из очереди и добавим все смежные ему элементы, которые еще не использованы.

Пример реализации на Паскале для дерева

Push(Start);

while not Empty do begin

Tek := Pop;

for I := 1 to N do

if not Used[A[Tek, I]] and (A[Tek, I] <> 0) then begin

Used[A[Tek, I]] := True; Push(A[Tek, I]);

end;

end;

10. Основные принципы объектно-ориентированного программирования

Объе́ктно-ориенти́рованное программи́рование (ООП) — парадигма программирования, в которой основными концепциями являются понятия объектов и классов (либо, в менее известном варианте языков с прототипированием, — прототипов).

Класс — это тип, описывающий устройство объектов. Понятие «класс» подразумевает некоторое поведение и способ представления. Понятие «объект» подразумевает нечто, что обладает определѐнным поведением и способом представления. Говорят, что объект — это экземпляр класса. Класс можно сравнить с чертежом, согласно которому создаются объекты. Обычно классы разрабатывают таким образом, чтобы их объекты соответствовали объектам предметной области.

Класс является описываемой на языке терминологии (пространства имѐн) исходного кода моделью ещѐ не существующей сущности, т. н. объекта.

Объект — сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса (например, после запуска результатов компиляции линковки) исходного кода на выполнение).

Прототип — это объект-образец, по образу и подобию которого создаются другие объекты.

Главные понятия и разновидности

Структура данных «класс», представляющая собой объектный тип данных, внешне похожа на типы данных процедурно-ориентированных языков, такие как структура в языке Си или запись в Паскале или QuickBasic. При этом элементы такой структуры (члены класса) могут сами быть не только данными, но и методами (то есть процедурами или функциями). Такое объединение называется инкапсуляцией.

Наличие инкапсуляции достаточно для объектности языка программирования, но ещѐ не означает его объектной ориентированности — для этого требуется наличие наследования.

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм.

Язык Self, соблюдая многие исходные положения объектно-ориентированного программирования, ввѐл альтернативное классам понятие прототипа, положив начало прототипному программированию, считающемуся подвидом объектного.

Основные понятия

Абстракция данных

Объекты представляют собой упрощенное, идеализированное описание реальных сущностей предметной области. Если соответствующие модели адекватны решаемой задаче, то работать с ними оказывается намного удобнее, чем с низкоуровневым описанием всех возможных свойств и реакций объекта.

Инкапсуляция — это принцип, согласно которому любой класс должен рассматриваться как чёрный ящик — пользователь класса должен видеть и использовать только интерфейсную часть класса (т. е. список декларируемых свойств и методов класса) и не вникать в его внутреннюю реализацию. Поэтому данные принято инкапсулировать в классе таким образом, чтобы доступ к ним по чтению или записи осуществлялся не напрямую, а с помощью методов. Принцип инкапсуляции (теоретически) позволяет минимизировать число связей между классами и, соответственно, упростить независимую реализацию и модификацию классов.

Сокрытие данных — неотделимая часть ООП, управляющая областями видимости. Является логическим продолжением инкапсуляции. Целью сокрытия является невозможность для пользователя узнать или испортить внутреннее состояние объекта.

Наследованием называется возможность порождать один класс от другого с сохранением всех свойств и методов класса-предка (прародителя, иногда его называют суперклассом) и добавляя, при необходимости, новые свойства и методы. Набор классов, связанных отношением наследования, называют иерархией. Наследование призвано отобразить такое свойство реального мира, как иерархичность.

Полиморфизмом называют явление, при котором функции (методу) с одним и тем же именем соответствует разный программный код (полиморфный код) в зависимости от того, объект какого класса используется при вызове данного метода. Полиморфизм обеспечивается тем, что в классепотомке изменяют реализацию метода класса-предка с обязательным сохранением сигнатуры метода. Это обеспечивает сохранение неизменным интерфейса класса-предка и позволяет осуществить связывание имени метода в коде с разными классами — из объекта какого класса осуществляется вызов, из того класса и берётся метод с данным именем. Такой механизм называется динамическим (или поздним) связыванием — в отличие от статического (раннего) связывания, осуществляемого на этапе компиляции.