Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАСЧЕТ ПЕРЕХОД. ПРОЦ. В ЛИНЕЙН. ЭЛЕКТРИЧ.УП.DOC
Скачиваний:
66
Добавлен:
01.05.2015
Размер:
5.36 Mб
Скачать

2. Классический метод расчета переходного процесса

2.1. Краткие теоретические сведения

В основе классического метода расчета переходных процессов в электрических цепях лежит составление интегрально-дифференциальных уравнений для мгновенных значений токов и напряжений. Эти уравнения составляют для схем, полученных после коммутации, основываясь на известных методах расчета электрических цепей, таких как метод непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых потенциалов. Решение полученной системы уравнений относительно выбранной переменной и составляет сущность классического метода.

При этом падение напряжений в активных сопротивлениях r и на реактивных элементах: конденсаторе C и катушке индуктивности L определяются соответственно:

,

,

.

Учитывая, что решение дифференциальных уравнений проще интегрально-дифференциальных, полученную систему сводят к одному дифференциальному уравнению относительно выбранной переменной.

Порядок дифференциального уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением:

,

где и– число катушек индуктивности и конденсаторов соответственно после указанного упрощения исходной схемы;– число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки);– число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Обозначим искомую функцию времени (напряжение, ток, потокосцепление и т. п.) через x = x(t), тогда дифференциальное уравнение m-го порядка, описывающее переходный процесс в электрической цепи, находящейся под воздействием источника f(t), имеет вид:

, (1)

где b0, b1, ..., bm-1, bm – коэффициенты, зависящие от параметров цепи (в дальнейшем будем рассматривать цепи только с постоянными параметрами); f(t) – функция, описывающая характер воздействия на цепь.

Дифференциальное уравнение (1) относится к линейным неоднородным уравнениям m-го порядка. Как известно из курса высшей математики, его решение есть сумма общего решения xсв однородного дифференциального уравнения m-го порядка:

и частного решения xпр уравнения (1)

х = хсв + хпр.

Частное решение данного неоднородного уравнения, получаемое с учетом внешнего воздействия , называется принужденной составляющей решенияхпр и определяется из соотношений для установившегося режима данной цепи после коммутации.

Общее решение однородного уравнения определяет процессы, которые протекают в цепи без участия внешнего воздействия , и называется свободной составляющей хсв. Вид свободной составляющей переходного процесса определяется числом и значениями корней характеристического уравнения:

= 0.

В случае, когда корни характеристического уравнения вещественные и различные, решение имеет вид:

,

где А1, А2, …, Аm – постоянные интегрирования, которые находятся из начальных условий задачи.

В случае, когда корни уравнения – вещественные и равные, т. е. p1 = p2 = …pm = p, свободная составляющая определяется уравнением:

.

Если корни комплексно-сопряженные , тогда решение имеет вид:

,

где А и – постоянные интегрирования, определяемые также из начальных условий задачи.

В табл. 1 обобщены данные для определения свободных составляющих дифференциального уравнения m-го порядка.

Таблица 1