Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
9
Добавлен:
19.04.2013
Размер:
389.63 Кб
Скачать

Independent variables. The equation of the fitted model is

I = 33,3577*Tr + 0,800313*K - 0,748868*LAG(K;1) + 0,105549*Y -

0,0890858*LAG(Y;1)

Since the P-value in the ANOVA table is less than 0.01, there is a

statistically significant relationship between the variables at the

99% Confidence level.

The R-Squared statistic indicates that the model as fitted

explains 99,9971% of the variability in I. The adjusted R-squared

statistic, which is more suitable for comparing models with different

numbers of independent variables, is 99,9967%. (Note: since the model

does not contain a constant, you should be careful in interpreting the

R-Squared values. Do not compare these R-Squared values with those of

models which do contain a constant.) The standard error of the

estimate shows the standard deviation of the residuals to be 3,48169.

This value can be used to construct prediction limits for new

observations by selecting the Reports option from the text menu. The

mean absolute error (MAE) of 2,53173 is the average value of the

residuals. The Durbin-Watson (DW) statistic tests the residuals to

determine if there is any significant correlation based on the order

in which they occur in your data file. Since the DW value is greater

than 1.4, there is probably not any serious autocorrelation in the

residuals.

In determining whether the model can be simplified, notice that the

highest P-value on the independent variables is 0,0463, belonging to

Tr. Since the P-value is less than 0.05, that term is statistically

significant at the 95% confidence level. Consequently, you probably

don't want to remove any variables from the model.

Multiple Regression Analysis I.3

-----------------------------------------------------------------------------

Dependent variable: I

-----------------------------------------------------------------------------

Standard T

Parameter Estimate Error Statistic P-Value

-----------------------------------------------------------------------------

C 0,25445 0,00559227 45,5002 0,0000

-----------------------------------------------------------------------------

Analysis of Variance

-----------------------------------------------------------------------------

Source Sum of Squares Df Mean Square F-Ratio P-Value

-----------------------------------------------------------------------------

Model 1,01467E7 1 1,01467E7 2070,27 0,0000

Residual 142133,0 29 4901,14

-----------------------------------------------------------------------------

Total 1,02888E7 30

R-squared = 98,6186 percent

R-squared (adjusted for d.f.) = 98,6186 percent

Standard Error of Est. = 70,0081

Mean absolute error = 57,2451

Durbin-Watson statistic = 2,59572

The StatAdvisor

---------------

The output shows the results of fitting a multiple linear

regression model to describe the relationship between I and 1

Соседние файлы в папке CourseWork