
- •26. Внутренняя энергия как функция состояния. Первое начало термодинамики и его применение к изопроцессам. Теплоемкости идеального газа.
- •27. Обратимые и необратимые тепловые процессы. Второе начало термодинамики. Тепловые машины и их кпд. Цикл Карно. Теоремы Карно.
- •28. Энтропия и ее свойства. Связь энтропии со статистическим весом состояния. Статистическое истолкование второго начала термодинамики.
- •III Электростатика и постоянный ток
- •29. Электростатическое поле, его напряженность. Напряженность поля точечного заряда. Принцип суперпозиции Диполь, поле диполя.
- •30. Поток вектора напряженности. Теорема Гаусса и ее применение для расчета напряженности электростатического поля в вакууме.
- •31. Работа электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля. Потенциал.
- •32. Связь напряженности с потенциалом электростатического поля. Линии напряженности и эквипотенциальные поверхности.
- •33. Электрическое поле в диэлектрике. Типы диэлектриков. Связанные заряды. Вектор поляризованности и его связь с напряженностью. Диэлектрическая восприимчивость вещества.
- •34. Теорема Гаусса для электростатического поля в диэлектриках. Вектор электрического смещения d. Диэлектрическая проницаемость вещества.
- •35. Проводник во внешнем электростатическом поле. Электростатическая индукция. Распределение заряда на проводнике. Электростатическая защита.
- •36. Энергия взаимодействия электрических зарядов. Энергия заряженного проводника и конденсатора.
- •37. Энергия электростатического поля. Объемная плотность энергии электрического поля.
- •38. Общие характеристики и условия существования электрического тока. Стационарное электрическое поле. Уравнение непрерывности.
- •39. Сторонние силы. Электродвижущая сила источника тока. Обобщенный закон Ома для участка цепи с источником тока.
- •40. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- •IV Магнитное поле
- •42. Рамка с током в магнитном поле. Магнитный момент контура с током. Момент силы, действующий на рамку с током в магнитном поле.
- •43. Магнитный поток. Теорема Гаусса для магнитного поля и ее смысл. Работа по перемещению проводника с током в магнитном поле.
- •44. Магнитное поле в веществе. Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики и их свойства.
- •45. Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость.
- •V Электромагнитная индукция. Уравнения Максвелла для электромагнитного поля
- •46. Явление электромагнитной индукции. Основной закон электромагнитной индукции. Правило Ленца.
- •47. Явления самоиндукции и взаимной индукции. Индуктивность длинного соленоида. Коэффициент взаимной индукции.
- •48. Магнитная энергия тока. Плотность энергии магнитного поля.
- •49. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Вихревое электрическое поле.
- •50. Ток смещения. Система уравнений Максвелла. Относительность электрических и магнитных полей.
43. Магнитный поток. Теорема Гаусса для магнитного поля и ее смысл. Работа по перемещению проводника с током в магнитном поле.
Магни́тный
пото́к — поток
как интеграл вектора магнитной индукции
через конечную поверхность.
В соответствии с теоремой Гаусса для магнитной индукции поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.
dA=IdФ
Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.
44. Магнитное поле в веществе. Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики и их свойства.
Все вещества в большей или меньшей степени обладают магнитными свойствами.
Магнитная проницаемость:
Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов.
Слабо-магнитные вещества делятся на две группы – парамагнетики и диамагнетики. Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиков μ > 1, а у диамагнетиков μ < 1.
У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано силой Лоренца на электронные орбиты. Изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.
В атомах парамагнетиков магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие – микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по направлению индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля.
Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками. При определенной температуре (точке Кюри) у ферромагнетиков теряются магнитные свойства вещества и они становятся парамагнетиками.
μ > > 1
Магнитная проницаемость μ ферромагнетиков не является постоянной величиной; она сильно зависит от индукции B0 внешнего поля.