
- •26. Внутренняя энергия как функция состояния. Первое начало термодинамики и его применение к изопроцессам. Теплоемкости идеального газа.
- •27. Обратимые и необратимые тепловые процессы. Второе начало термодинамики. Тепловые машины и их кпд. Цикл Карно. Теоремы Карно.
- •28. Энтропия и ее свойства. Связь энтропии со статистическим весом состояния. Статистическое истолкование второго начала термодинамики.
- •III Электростатика и постоянный ток
- •29. Электростатическое поле, его напряженность. Напряженность поля точечного заряда. Принцип суперпозиции Диполь, поле диполя.
- •30. Поток вектора напряженности. Теорема Гаусса и ее применение для расчета напряженности электростатического поля в вакууме.
- •31. Работа электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля. Потенциал.
- •32. Связь напряженности с потенциалом электростатического поля. Линии напряженности и эквипотенциальные поверхности.
- •33. Электрическое поле в диэлектрике. Типы диэлектриков. Связанные заряды. Вектор поляризованности и его связь с напряженностью. Диэлектрическая восприимчивость вещества.
- •34. Теорема Гаусса для электростатического поля в диэлектриках. Вектор электрического смещения d. Диэлектрическая проницаемость вещества.
- •35. Проводник во внешнем электростатическом поле. Электростатическая индукция. Распределение заряда на проводнике. Электростатическая защита.
- •36. Энергия взаимодействия электрических зарядов. Энергия заряженного проводника и конденсатора.
- •37. Энергия электростатического поля. Объемная плотность энергии электрического поля.
- •38. Общие характеристики и условия существования электрического тока. Стационарное электрическое поле. Уравнение непрерывности.
- •39. Сторонние силы. Электродвижущая сила источника тока. Обобщенный закон Ома для участка цепи с источником тока.
- •40. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- •IV Магнитное поле
- •42. Рамка с током в магнитном поле. Магнитный момент контура с током. Момент силы, действующий на рамку с током в магнитном поле.
- •43. Магнитный поток. Теорема Гаусса для магнитного поля и ее смысл. Работа по перемещению проводника с током в магнитном поле.
- •44. Магнитное поле в веществе. Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики и их свойства.
- •45. Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость.
- •V Электромагнитная индукция. Уравнения Максвелла для электромагнитного поля
- •46. Явление электромагнитной индукции. Основной закон электромагнитной индукции. Правило Ленца.
- •47. Явления самоиндукции и взаимной индукции. Индуктивность длинного соленоида. Коэффициент взаимной индукции.
- •48. Магнитная энергия тока. Плотность энергии магнитного поля.
- •49. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Вихревое электрическое поле.
- •50. Ток смещения. Система уравнений Максвелла. Относительность электрических и магнитных полей.
33. Электрическое поле в диэлектрике. Типы диэлектриков. Связанные заряды. Вектор поляризованности и его связь с напряженностью. Диэлектрическая восприимчивость вещества.
Диэлектриками называются вещества, которые в обычных условиях практически не проводят электрический ток, их удельное сопротивление в раз больше, чем у металлов.
-
диэлектрическая проницаемость среды.
где
-
называется диэлектрической восприимчивостью
вещества и зависит от его строения.
Типы диэлектриков: полярные (эпоксидная смола), неполярные (полиэтилен), с ионной структурой (электротехнический фарфор).
При внесении диэлектрика в электрическое поля в нем наступает электризация. Электроны не могут свободно перемещаться по объёму. Но под действием внешнего электрического поля внутри молекулы вещества диэлектрика появляется некоторое смещение зарядов. Положительный смещается вдоль направления поля, а отрицательный против. Вследствие этого поверхность получает некий заряд. Процесс образования заряда на поверхности диэлектриков под действием электрического поля называется поляризацией диэлектрика.
-
вектор поляризации.
Для не слишком сильных полей можно принять, что величина вектора поляризации пропорциональна величине напряженности поля, т.е. Р~Е.
Связанные заряды – разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга.
34. Теорема Гаусса для электростатического поля в диэлектриках. Вектор электрического смещения d. Диэлектрическая проницаемость вещества.
Поток
вектора электрического смещения через
замкнутую поверхность пропорционален
заключённому внутри этой поверхности
свободному электрическому заряду.
Электрическая индукция (электрическое смещение) — векторная величина, равная сумме вектора напряжённости электрического поля и вектора поляризации.
Относи́тельная диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме.
где
-
называется диэлектрической восприимчивостью
вещества и зависит от его строения.
35. Проводник во внешнем электростатическом поле. Электростатическая индукция. Распределение заряда на проводнике. Электростатическая защита.
Если проводнику сообщить избыточный заряд, то этот заряд распределится по поверхности проводника.
при помещении незаряженного проводника во внешнее электрическое поле Е0 свободные микроскопические заряды будут перемещаться к его поверхности: положительные по полю, а отрицательные против поля.
На
одном конце проводника будет скапливаться
избыток положительного заряда, а на
другом избыток отрицательного до тех
пор, пока создаваемое этими зарядами
дополнительное поле
не скомпенсирует внешнее поле во всех
точках внутри проводника.
Электростатическая индукция — явление наведения собственного электростатического поля, при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур у непроводящих тел.
Если зарядить изолированный проводник, заряд распределится только на поверхности проводника по следующим причинам:
- поскольку одноимённые заряды отталкиваются, избыточные электрические заряды стремятся расположиться как можно дальше друг от друга; это соответствует распределению заряда на поверхности;
- теорема Гаусса: поля внутри проводника быть не может быть, следовательно, и поток поля через любую замкнутую поверхность, построенную внутри проводника, равен нулю;
Заряд должен распределиться по поверхности проводника таким образом, что бы эта поверхность была эквипотенциальной.
Электрическое поле, созданное зарядами на изолированном проводнике, всегда направлено перпендикулярно поверхности проводника. Это поле не приводит к движению зарядов, ибо заряды не могут покинуть проводник.
Электростатическая защита — помещение приборов, чувствительных к электрическому полю, внутрь замкнутой проводящей оболочки для экранирования от внешнего электрического поля. Это явление связано с тем, что на поверхности проводника (заряженного или незаряженного), помещённого во внешнее электрическое поле, заряды перераспределяются так, что создаваемое ими внутри проводника поле полностью компенсирует внешнее.