
- •Меркурій.
- •Венера.
- •Метеорити.
- •Розповсюдженість хімічних елементів в земній корі. Кларки елементів та методи їх визначення.
- •Склад ядра
- •5.1 Розпад збуджених і нестійких ядер
- •Хондритнормалізовані графіки та їх використання для інтерпретації розподілу рідкісноземельних елементів, зокрема полівалентних.
- •Поняття про структурний, термодинамічний та кінетичний фактори контролю розподілу елементів в геологічних об’єктах.
- •Типи дифузії в природних системах. Швидкість дифузії компонентів як головний кінетичний фактор та його вплив на коефіцієнти розподілу хімічних елементів.
- •Збільшенні швидкості дифузії сприяє підвищеню зростанню коефіцієнту розподілу.
- •Помірнокислотні метасоматити
- •Кислотні метасоматити
- •Нейтральні метасоматити
- •Помірнокислотні метасоматити
- •Кислотні метасоматити
- •1. Фізичне вивітрювання
- •2. Хімічне вивітрювання
- •Нівальний (льодовий) літогенез
- •Вулканогенно-осадочний літогенез
Розповсюдженість хімічних елементів в земній корі. Кларки елементів та методи їх визначення.
Для отримання даних про середній склад земної кори дослідниками використовувались 4 основні підходи (та їх комбінації):
Підрахунок за наявними аналізами порід
Підрахунок за аналізами з врахуванням поширеності порід
Поширеність елементів в корі оцінюється на основі моделей кори
Непряма оцінка (наприклад, шляхом визначення співвідношень основних та кислих порід за середнім складом осадків що утворились при звітрюванні цих порід)
Методи (A) і (B) частіше використовувались для континентальної кори, а метод (D) взагалі можна застосовувати тільки для континентальної кори.
Коли Ф.У.Кларк (1889 рік), базуючись на 880 аналізах по 10 елементам, визначав загальний хімічний склад земної кори ("Розповсюдженість хімічних елементів") він використовував метод (A). Не зважаючи на всі методичні хиби такого підходу, оцінка Кларка достатньо близька до даних отриманих з багато більшої кількості аналізів і в результаті значно складніших математичних підрахунків.
Земна кора складена магматичними, осадочними та, утвореними за рахунок тих і інших, метаморфічними породами. Співвідношення вихідних магматичних і осадочних порід, за Кларком, складає 95:5. Осадочні породи, в свою чергу, складаються з: сланців (4%), пісковиків (0,75%), вапняків (0,25%). Якщо ж прийняти масу вивержених порід за 100%, то розповсюдженість їх найважливіших представників розподілиться наступним чином.
Використовуються новітні методи аналізу (нейтронно-активаційний, атомно-адсорбційний, люмінесцентний, електронного парамагнітного резонансу, мікрозондового аналізу тощо).
1) земна кора складена в основному 8 елементами: O, Si, Al, Fe, Ca, Mg, Na, K;
2) на частку інших 84 елементів припадає менше 1 % маси земної кори;
3) серед найголовніших по поширеності елементів особлива роль у земній корі належить O.
Особлива роль O полягає в тому, що його атоми складають 47% маси земної кори і майже 90% об’єму найважливіших породоутворюючих мінералів.
Аналіз поширення елементів за типами порід дає, зокрема, наступні групи:
а) елементи в основних і кислих породах поширені приблизно однаково - Ga, Ge, Se, Ті, Re, Sr, Nb, Cd, In, Hf;
б) в основних породах даного елемента більше, ніж у кислих - Сг, Sc, Ni, V, Co, Pt;
в) у кислих породах вміст елементу помітно вищий, ніж в основних - Li, Be, Rb, TR, Ва, Tl, Th, U, Та.
Поширеність рідкісних і розсіяних елементів у земній корі визначалася багатьма дослідниками, в першу чергу Ф.У.Кларком, В.М.Гольдшмідтом, В.І.Вернадським, О.Е.Ферсманом, С.Р.Тейлором, О.П.Виноградовим, Л.Г.Аренсом, К.Г.Ведеполем.
Використовуючи новітні методи аналізу (нейтронно-активаційний, атомно-адсорбційний, люмінесцентний, електронного парамагнітного резонансу, мікрозондового аналізу тощо), із результатів численних точних аналізів мінералів, порід і їхніх сумішей, а також із зіставлення поширеності окремих пар елементів (наприклад, Rb : K, Hf : Zr, Re : Mo, Cd : Zn) вдалося визначити вміст в земній корі майже всіх елементів періодичної системи. Ці цифри за пропозицією Ферсмана одержали назву кларків на честь Ф.У.Кларка, який вперше, як уже говорилося, достатньо повно і точно оцінив хімічний склад земної кори.
На сьогодні найчастіше користуються кларками земної кори:
за О.П.Виноградовим, який за середній склад земної кори взяв суміш, що складається з 2 ч. кислих порід і 1 ч. основних порід,
за О.О.Беусом, який встановив кларки виходячи з співвідношення гранітного та базальтового шарів 1:2.
за С.Р.Тейлором, який встановив кларки для континентальної кори виходячи із співвідношення 1:1 основних і кислих магматичних порід.
Дослідження двох найголовніших магм Землі (основних і кислих) показали, що в особливостях їх складу знайшло відображення відоме правило Оддо-Гаркінса: якщо не враховувати парний Si і непарний А1, які однаково важливі для обох магм, то виявиться, що для кислої магми переважно характерні непарні елементи, а для основної - парні. Кисла магма багата 1H, 3Li, 5B, 9F, 11Na, 17Cl, 19K, а основна - 12Mg, 20Ca, 22Ti, 24Cr, 26Fe, 28Ni [Ф.Ю.Левінсон-Лессінг, 1935 р.].
В. И. Вернадский назвав розсіяними ті елементи, що, знаходячись у земній корі в значних кількостях, не дають високих концентрацій. Так, наприклад, величезні маси Rb розсіяні в польових шпатах, Ga - в алюмінієвих мінералах, Re - у молібденітах, Cd - у сфалеритах, Ag - у галенітах, Sc - у силікатах, Li - у слюдах і т.д.
На відміну від розсіяних, рідкісні (кларк < 0,010,001%) елементи в земній корі знаходяться в значно меншій кількості, хоча й утворюють власні мінерали, які можуть концентруватися в рудні скупчення. Вернадський у зв'язку з цим увів поняття кларка концентрації елемента в мінералах і родовищах (як відношення вмісту у мінералі, родовищі до величини кларку). Так, кларк Mn у земній корі складає 0,1 %, а кларк концентрації Mn у родоніті - 400, у псиломелані - 500, у піролюзиті - 632.
Таким чином, доступність того або іншого елемента насамперед визначається його спроможністю досягати високих кларків концентрації, тобто утворювати мінерали, скупчення яких можуть бути економічно вигідними для використання родовища.
Згідно до основного геохімічного закону Гольдшмідта кларки залежать від будови атомного ядра, а обумовлений міграцією розподіл елементів – від будови зовнішніх електронних оболонок (хімічних властивостей). Це не зовсім так, оскільки і кларки залежать від хімічних властивостей (сама земна кора є продуктом міграції) і міграція певним чином залежить від кларків (вміст елементів в розчинах і розплавах, здатність до осадження). Саме тому нині користуються дещо відкоригованим визначенням основного геохімічного закону (закон Ферсмана-Гольдшмідта): геохімія елементу в земній корі визначається як його хімічними властивостями, так і величиною кларку.
Мантія та ядро Землі, їх мінеральний та хімічний склад. Джерела наявних даних. Примітивна та деплетована мантія (поняття про мантійні геохімічні резервуари).
Земля є найретельніше вивченою людством планетою Всесвіту, однак безпосередні спостереження охоплюють інтервал не далі як до 15 км вглиб від земної поверхні. Інформація ж щодо глибинної будови Землі отримана переважно в результаті інтерпретації даних дистанційних досліджень: сейсморозвідка і сейсмологія, гравірозвідка і магніторозвідка, теплофізичні дослідження, магніто-телуричне зондування, визначення прецесії рівнодення (момент інерції Землі); а також петрофізичних та геохімічних досліджень гірських порід і метеоритів, експериментального моделювання.
Таким чином, з шести оболонок Землі, представлених атмосферою, гідросферою, біосферою, літосферою (земна кора), мантією і ядром, три останні виділяються лише за геофізичними даними, ключову роль в яких відіграють сейсморозвідка та сейсмологія.
На загальну думку, наша планета сформувалася безпосередньо в результаті аккреції речовини сонячної небули. Щоправда, спосіб аккреції є дискусійним.
За моделлю гомогенної аккреції (швидкість аккреції значно менша за швидкість остигання небули, так що між газовою складовою небули та конденсатом речовини досягається хімічна рівновага) добре пояснюється поширеність на Землі таких елементів як Na, K, F, Cl, Br, P. Але за цією моделлю важко пояснити відмінності в валовому складі Землі і Місяця, а також різноманітність типів метеоритів. Крім того гомогенна аккреція вимагає досить значного (мільйони років і більше) проміжку часу на формування планети.
За моделлю гетерогенної аккреції (швидкість аккреції порівняна або вища за швидкість остигання небули, так що рівновага між газовою складовою небули та конденсатом речовини неможлива) Земля сформувалася дуже швидко (близько 100000 років). Але, в такому випадку, виходячи з результатів теоретичного аналізу послідовності конденсації (див. тему Метеорити), слід вважати що протоядро Землі було не залізо-нікелевим (збагачені кальцієм і алюмінієм силікати і окисли конденсуються раніше за Fe-Ni сплав). У зв’язку з цим Андерсон і Хенкс [Anderson D.L., Hanks T.C., 1972] висловили припущення що протоядро якраз і складалося із високотемпературних силікатів, і було збагачене Ca, Al, Ti, Th, U та TR. Після утворення такого ядра конденсувалося залізо, потім – магнезіальні силікати, далі – конденсати багаті калієм та летючими, в тому числі водою.
В будь-якому випадку формування Землі як планети завершилось близько 4,6 млрд. років тому і з цього часу розпочалась власне геологічна історія Землі.