Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

физиология крови

.rtf
Скачиваний:
18
Добавлен:
20.04.2015
Размер:
652.43 Кб
Скачать

Содержание Т-лимфоцитов в крови составляет 65—80 % от общего количества лимфоцитов, В-лимфоцитов — 8—20 %, NK-лимфоцитов — 5—20 %

Основная функция лимфоцитов заключается в создании специального иммунитета организма. Они являются центральным звеном всей защитной системы человека. Будущие Т-клетки поступают в тимус, дифференцируются в нем и проходят полное созревание перед тем, как выйти в организм на борьбу с чужеродными клетками.

В зависимости от имеющихся маркеров, Т-лимфоциты делятся на несколько видов. Это Т-киллеры, которые осуществляют всевозможные реакции иммунитета в клетке. Например, вместе с моноцитами лимфоцитами они захватывают вирусы и бактерии, вызывающие заболевания, онкологические клетки, любые инородные тела. Так как макрофаги обладают фагоцитарной функцией, то они при помощи фагоцитоза очищают организм от лишних клеток.

Следующий вид – это Т-хелперы, или помощники, которые играют важную роль в регуляции гуморального иммунитета. Это происходит в результате их взаимодействия и объединения с В-лимфоцитами.

Т-супрессоры, или угнетатели, выполняют функцию подавления повышенной реакции В-лимфоцитов. Сюда же можно отнести и торможение ими образования антител.

Т-киллеры по праву называются клетками-убийцами. Они распространены по всему организму человека. Их основная цель и задача – обнаружение бактерии или инородного тела и его уничтожение. Прекиллер, найдя клетку вируса, прикрепляется к ней и много раз делится, производя огромное количество активных убийц. Каждая из них обладает определенным рецептором для антигена, с помощью которого происходит уничтожение вредной клетки. Для Т-киллеров нет разделения на своих и чужих. Если клетка организма не может выполнять свои функции, заражена или слабая, то убийца уничтожит ее. Разрушение клетки происходит путем впрыскивания специального белка, который «сушит» бактерию, а моноциты лимфоциты уничтожают ее до конца.

Для полноценной работы Т-киллеров необходимо связывание трех компонентов: это Т-клеточного рецептора, антигенного комплекса и CD8-корецептора. Пик активности данных лимфоцитов происходит тогда, когда одна и та же молекула объединяет Т-клеточный рецептор и особый маркер киллеров – CD8-корецептор.

Т-хелперы также обладают маркером – это CD-4. Их основная работа – определять и уничтожать токсины бактерий. Моноциты лимфоциты поглощают очаги интоксикации. Как только происходит связывание маркера и клеточного рецептора, начинается ускоренное деление Т-лимфоцитов, образуется большое количество хелперов. Они секретируют специальный белок, который воздействует на активные антитела – интерлейкин. Также под его воздействием происходит быстрое деление В-лимфоцитов.

В регуляции иммунной системы человека принимают активное участие глюкокортикоиды - гормоны, вырабатываемые корой надпочечников. Во время процесса деления все клетки наиболее подвержены их воздействию. На первых этапах митоза или мейоза глюкокортикоиды подавляют выработку интерлейкина, который производится во время пролиферации.

Также функцией лимфоцитов считается способность обнаруживать и уничтожать клетки, вызывающие опухоли и имеющие аллогенную или ксеногенную структуру.

12.структура и ф-ции тромбоцитов. Тромбоциты (от греческого θρόμβος, "сгусток" и κύτος, "клетка") – это небольшие (2-4 мкм диаметром) дискообразные безъядерные клеточные фрагменты, циркулирующие в кровотоке, чутко реагирующие на повреждения сосуда и играющие критически важную роль в гемостазе и тромбозе. Тромбоциты образуются при фрагментации своих предшественников мегакариоцитов в костном мозге. Из одного мегакариоцита образуется от 5 до 10 тысяч тромбоцитов. Средняя продолжительность жизни тромбоцита составляет 5-9 дней. Старые тромбоциты разрушаются в процессе фагоцитоза в селезёнке и клетками Купфера в печени.

Функции. Сканирующая электронная микрофотография (SEM) клеток крови человека: эритроцит, активированный тромбоцит, лейкоцит (слева направо).

Тромбоциты выполняют две основных функции:

формирование тромбоцитарного агрегата, первичной пробки, закрывающей место повреждения сосуда;

предоставление своей поверхности для ускорения ключевых реакций плазменного свертывания.

Относительно недавно установлено также, что тромбоциты играют важнейшую роль в заживлении и регенерации поврежденных тканей, освобождая из себя в поврежденные ткани факторы роста, которые стимулируют деление и рост поврежденных клеток. Факторы роста представляют собой полипептидные молекулы различного строения и назначения. К важнейшим факторам роста относятся тромбоцитарный фактор роста (PDGF), трансформирующий фактор роста (TGF-β), фактор роста эндотелия сосудов (VEGF), фактор роста эпителия (EGF), фактор роста фибробластов (FGF), инсулиноподобный фактор роста (IGF).[1]

Физиологическая плазменная концентрация тромбоцитов 150 000-300 000 в мкл.

Уменьшение количества тромбоцитов в крови может приводить к кровотечениям. Увеличение же их количества ведет к формированию сгустков крови (тромбоз), которые могут перекрывать кровеносные сосуды и приводить к таким патологическим состояниям, как инсульт, инфаркт миокарда, легочная эмболия или закупоривание кровеносных сосудов в других органах тела.

Неполноценность или болезнь тромбоцитов называется тромбоцитопатия, которая может быть либо уменьшением количества тромбоцитов (тромбоцитопения), либо нарушением функциональной активности тромбоцитов (тромбастения), либо увеличением количества тромбоцитов (тромбоцитоз). Существуют болезни, уменьшающие число тромбоцитов, такие как гепарин-индуцированная тромбоцитопения или тромботическая пурпура, которые обычно вызывают тромбозы вместо кровотечений.

В связи с неточностью описаний, отсутствием фотографической техники и запутанностью терминологии ранних периодов развития микроскопии, время первого наблюдения тромбоцитов точно неизвестно. Чаще всего их открытие приписывается Донне (Париж, 1842), однако есть данные, что их наблюдал еще сам создатель микроскопа, ван Левенгук (Нидерланды, 1677). Термин "кровяные пластинки", который до сих пор является предпочтительным в англоязычной литературе ("blood platelets"), был введен Биццоцеро (Турин, 1881), который также сыграл ведущую роль в выявлении связи тромбоцитов с гемостазом и тромбозом. Это впоследствии привело к появлению термина "тромбоцит" (Декхюйзен, 1901), который в русском языке стал основным, а в англоязычной литературе используется исключительно для ядерных клеток-тромбоцитов у не-млекопитающих ("thrombocytes"). Кроме того, в русской литературе для тромбоцитов может употребляться термин "бляшка Биццоцеро".

13. Сосудисто-тромбоцитарный гемостаз. В сосудисто-тромбоцитарном механизме свертывания крови участвуют сосуды, ткань, окружающая сосуды и форменные элементы крови (главная роль принадлежит тромбоцитам).

Тромбоциты образуются в костном мозге из мегакариоцитов. Продолжительность их жизни около 9 суток. При недостаточном количестве тромбоцитов или их функциональной неполноценности развивается микроциркуляторный тип кровоточивости. К важнейшим функциям тромбоцитов относят адгезивно-агрегационную и ангиотрофическую.

В условиях нормы эндотелий эффективно предупреждает процессы адгезии, агрегации тромбоцитов, а также реакций коагуляции. Способность эндотелия сохранять кровь в жидком состоянии обеспечивается синтезом ингибитора агрегации тромбоцитов простациклина и отрицательным зарядом эндотелиальных клеток. Кроме того, эндотелиальный белок тромбомодулин препятствует уже начавшейся коагуляции. Основной функцией тромбомодулина является инактивация тромбина и превращение (модификация) его в мощный активатор антикоагулянтной системы - протеин С. За счет этого происходит значимое снижение скорости коагуляционных реакций.

Эндотелий участвует в фибринолизе за счёт синтеза и выделения в кровоток тканевого плазминогенового активатора, который активирует плазминовую систему.

При повреждении мелкие сосуды спазмируются. Этот спазм обусловлен сокращением гладкомышечных клеток, он возникает рефлекторно и продлевается серотонином, тромбоксаном А2, катехоламинами и другими вазоконстрикторами, которые появляются из эндотелиальных клеток и тромбоцитов. Повреждение сосудов сопровождается быстрой активацией тромбоцитов. Эта активация обусловлена появлением высоких концентраций АДФ (из поврежденных эритроцитов и сосудов), а также появлением коллагеновых и фибриллярных структур из субэндотелия. Контакт крови с коллагеном немедленно ведёт к адгезии тромбоцитов, реализуемой с участием рецепторов GP-Ia, GP-Ib и фактора Виллебранда.

Под влиянием АДФ, тромбоксана А2 и катехоламинов тромбоциты склеиваются между собой, образуя агрегаты, которые являются основой тромбоцитарной пробки. Усилению агрегации способствует тромбин, всегда появляющийся в результате свертывания крови в месте повреждения. Агглютинация и агрегация сопровождается изменением формы тромбоцитов и появлению рецепторов на мембране тромбоцитов к фибриногену (GPIIb-IIIa), благодаря чему, в присутствии ионов Са++, последний связывает между собой активированные тромбоциты. Такая связь между активированными тромбоцитами не прочна. Именно поэтому такую агрегацию называют обратимой. Образование прочной тромбоцитарной пробки следует после вторичной агрегации, которая сопровождается секрецией из тромбоцитов ПгG2, ПгH2, тромбоксана А2, ионов Са++, фактор активации тромбоцитов (ФАТ), адреналина, норадреналина, фибриногена и многих других. Секреция этих веществ обусловлена активацией актомиозиновой системы тромбоцитов, что обуславливает выделение вышеперечисленных субстанций из тромбоцитов за счёт повышения давления внутри тромбоцита. Кроме того, активация актомиозиновой системы ведет к ретракции (сокращению и уплотнению) тромбоцитарной пробки.

В норме кровотечение из мелких сосудов прекращается не более чем через 5 минут.

14.факторы свертывания крови. Свертывающая система крови

Нормальное состояние крови в кровеносном русле обеспечивается деятельностью трех систем:

1) свертывающей;

2) противосвертывающей;

3) фибринолитической.

Процессы свертывания (коагуляции), противодействия свертыванию (антикоагуляции) и фибринолиза (растворения образовавшихся тромбов) находятся в состоянии динамического равновесия. Нарушение существующего равновесия может стать причиной патологического тромбообразования или, наоборот, кровоточивости.

Нарушения гемостаза — нормального функционирования указанных систем — наблюдается при многих заболеваниях внутренних органов: ишемической болезни сердца, ревматизме, сахарном диабете, заболеваниях печени, злокачественных новообразованиях, острых и хронических заболеваниях легких и др. Многие врожденные и приобретенные заболевания крови сопровождаются повышенной кровоточивостью. Грозным осложнением воздействия на организм ряда экстремальных факторов является ДВС-синдром (синдром диссеминированного внутрисосудистого свертывания крови).

Свертывание крови является жизненно важным физиологическим приспособлением, направленным на сохранение крови в пределах сосудистого русла. Образование сгустка (тромба) при нарушении целостности сосуда должно рассматриваться как защитная реакция, направленная на предохранение организма от кровопотери.

В механизме образования кровоостанавливающего тромба и патологического тромба, закупоривающего мозговой сосуд или сосуд, питающий мышцу сердца, много общего. Справедливо высказывание известного гематолога В. П. Балуды: «Образование гемостатического тромба в сосудах перерезанной пуповины — первая защитная реакция новорожденного организма. Патологический тромбоз — нередкая непосредственная причина смерти больного при ряде заболеваний».

Тромбоз коронарных (питающих мышцу сердца) и мозговых сосудов как следствие повышения активности свертывающей системы — одна из ведущих причин смертности в Европе и США.

Процесс свертывания крови — тромбообразование — чрезвычайно сложен.

Сущность тромбоза (греч. trombos — сгусток, свернувшаяся кровь) заключается в необратимой денатурации белка фибриногена и форменных элементов (клеток) крови. В тромбообразовании принимают участие самые разнообразные вещества, находящиеся в тромбоцитах, плазме крови, сосудистой стенке.

Весь процесс свертывания можно представить как цепь взаимосвязанных реакций, каждая из которых заключается в активации веществ, необходимых для следующего этапа.

Выделяют плазменный и сосудисто-тромбоцитарный гемостаз. В последнем самое активное участие принимают тромбоциты.

Тромбоциты — кровяные пластинки — мелкие безъядерные неправильно округлой формы клетки крови. Диаметр их составляет 1-4 мкм, а толщина 0,5-0,75 мкм. Они образуются в костном мозге путем отщепления участков вещества гигантских клеток — мегакариоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней, а затем разрушаются в печени, легких, селезенке.

Кровяные пластинки различаются по форме, степени зрелости; в 1 мкл крови их содержится 200-400 тысяч.

Тромбоциты содержат биологически активные вещества (в частности, гистамин и серотонин), ферменты. Выделяют 11 факторов свертывания крови, находящихся в тромбоцитах.

Свёртывание крови – это важнейший этап работы системы гемостаза, отвечающий за остановку кровотечения при повреждении сосудистой системы организма. Совокупность взаимодействующих между собой весьма сложным образом различных факторов свёртывания крови образуют систему свёртывания крови.

Свёртыванию крови предшествует стадия первичного сосудисто-тромбоцитарного гемостаза. Этот первичный гемостаз почти целиком обусловлен сужением сосудов и механической закупоркой агрегатами тромбоцитов места повреждения сосудистой стенки. Характерное время для первичного гемостаза у здорового человека составляет 1-3 мин. Собственно свёртыванием крови (гемокоагуляция, коагуляция, плазменный гемостаз, вторичный гемостаз) называют сложный биологический процесс образования в крови нитей белка фибрина, который полимеризуется и образует тромбы, в результате чего кровь теряет текучесть, приобретая творожистую консистенцию. Свёртывание крови у здорового человека происходит локально, в месте образования первичной тромбоцитарной пробки. Характерное время образования фибринового сгустка – около 10 мин. Свертывание крови - ферментативный процесс.

Основоположником современной физиологической теории свертывания крови является Александр Шмидт. В научных исследованиях 21-го века, проведённых на базе Гематологического научного центра под руководством Ф. И. Атауллаханова, было убедительно показано[1][2], что свёртывание крови представляет собой типичный автоволновой процесс, в котором существенная роль принадлежит эффектам бифуркационной памяти.

Физиология. Процесс гемостаза сводится к образованию тромбоцитарно-фибринового сгустка. Условно его разделяют на три стадии:

  • Временный (первичный) спазм сосудов;

  • Образование тромбоцитарной пробки за счёт адгезии и агрегации тромбоцитов;

  • Ретракция (сокращение и уплотнение) тромбоцитарной пробки.

Повреждение сосудов сопровождается немедленной активацией тромбоцитов. Адгезия (прилипание) тромбоцитов к волокнам соединительной ткани по краям раны обусловлена гликопротеином фактором Виллебранда[4]. Одновременно с адгезией наступает агрегация тромбоцитов: активированные тромбоциты присоединяются к повреждённым тканям и к друг другу, формируя агрегаты, преграждающие путь потере крови. Появляется тромбоцитарная пробка[3]

Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются различные биологически активные вещества (АДФ, адреналин, норадреналин и др.), которые приводят к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина[3], который воздействует на фибриноген с образованием сети фибрина, в которой застревают отдельные эритроциты и лейкоциты – образуется так называемый тромбоцитарно-фибриновый сгусток (тромбоцитарная пробка). Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, наступает её ретракция

Процесс свёртывания крови

Схема взаимодействия факторов свёртывания крови

Процесс свёртывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, переходя в активное состояние, приобретают способность активировать другие факторы свёртывания крови[3]. В самом простом виде процесс свёртывания крови может быть разделён на три фазы:

фаза активация включает комплекс последовательных реакций, приводящих к образованию протромбиназы и переходу протромбина в тромбин;

фаза коагуляции — образование фибрина из фибриногена;

фаза ретракции — образование плотного фибринового сгустка.

В области детального понимания процесса свёртывания крови с 1905 года произошёл значительный прогресс. Открыты десятки новых белков и реакций, участвующих в процессе свёртывания крови, который имеет каскадный характер. Сложность этой системы обусловлена необходимостью регуляции данного процесса.

Современное представление с позиций физиологии каскада реакций, сопровождающих свёртывание крови, представлено на рис. 2 и 3. Вследствие разрушения тканевых клеток и активации тромбоцитов высвобождаются белки фосфолипопротеины, которые вместе с факторами плазмы Xa и Va, а также ионами Ca2+ образуют ферментный комплекс, который активирует протромбин. Если процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, речь идёт о внешней системе свёртывания крови (внешний путь активации свертывания, или путь тканевого фактора). Основными компонентами этого пути являются 2 белка: фактор VIIа и тканевый фактор, комплекс этих 2 белков называют также комплексом внешней теназы.

Если же инициация происходит под влиянием факторов свёртывания, присутствующих в плазме, используют термин внутренняя система свёртывания. Комплекс факторов IXа и VIIIa, формирующийся на поверхности активированных тромбоцитов, называют внутренней теназой. Таким образом, фактор X может активироваться как комплексом VIIa—TF (внешняя теназа), так и комплексом IXa—VIIIa (внутренняя теназа). Внешняя и внутренняя системы свертывания крови дополняют друг друга[5].

В процессе адгезии форма тромбоцитов меняется — они становятся округлыми клетками с шиповидными отростками. Под влиянием АДФ (частично выделяется из повреждённых клеток) и адреналина способность тромбоцитов к агрегации повышается. При этом из них выделяются серотонин, катехоламины и ряд других веществ. Под их влиянием происходит сужение просвета повреждённых сосудов, возникает функциональная ишемия. В конечном итоге сосуды перекрываются массой тромбоцитов, прилипших к краям коллагеновых волокон по краям раны

На этой стадии гемостаза под действием тканевого тромбопластина образуется тромбин. Именно он инициирует необратимую агрегацию тромбоцитов. Реагируя со специфическими рецепторами в мембране тромбоцитов, тромбин вызывает фосфорилирование внутриклеточных белков и высвобождение ионов Ca2+.

При наличии в крови ионов кальция под действием тромбина происходит полимеризация растворимого фибриногена (см. фибрин) и образование бесструктурной сети волокон нерастворимого фибрина. Начиная с этого момента в этих нитях начинают фильтроваться форменные элементы крови, создавая дополнительную жёсткость всей системе, и через некоторое время образуя тромбоцитарно-фибриновый сгусток (физиологический тромб), который закупоривает место разрыва, с одной стороны, предотвращая потерю крови, а с другой — блокируя поступление в кровь внешних веществ и микроорганизмов. На свёртывание крови влияет множество условий. Например, катионы ускоряют процесс, а анионы — замедляют. Кроме того, существуют вещества как полностью блокирующие свёртывание крови (гепарин, гирудин и т. д.), так и активирующие его (яд гюрзы, феракрил).

Врождённые нарушения системы свёртывания крови называют гемофилией.

15.коагуляционный гемостаз. Общие положения . Вторичный, или коагуляционный, гемостаз обеспечивает плотную закупорку поврежденных сосудов красным тромбом, состоящим из сети волокон фибрина с захваченными ею клетками крови (тромбоцитами, эритроцитами и др.).

Под влиянием “активатора протромбина” — тромбокиназы, образующейся при повреждении тканей, агрегации и разрушении тромбоцитов, и в результате сложных химических взаимодействий факторов свертывания крови (см. ниже), белок плазмы протромбин превращается в тромбин, который, в свою очередь, расщепляет растворенный в плазме фибриноген с образованием фибрина. Волокна фибрина образуют основу тромба. Через несколько часов они активно сжимаются — происходит ретракция сгустка, в результате которой из него выдавливается светлая жидкость — сыворотка.

Упрощенная схема свертывания крови (по Моравицу)

Свертывание крови в целом представляет собой многоступенчатый каскадный процесс, протекающий с участием многочисленных факторов свертывания. Все факторы присутствуют в плазме в неактивной форме. Они обозначаются римскими цифрами и соответствующими названиями , в которых отражена их функция (например, фактор XI — плазменный предшественник тромбопластина), фамилии больных с впервые обнаруженным у них дефицитом того или иного фактора (фактор XII — фактор Хагемана, фактор Х — фактор Стюарта-Прауэра и др.) или фамилии авторов, описавших данный фактор (например, фактор Виллебранда). Для обозначения активированных факторов свертывания добавляется буква “а”. Следует помнить также, что фактор VI изъят из классификации, так как представляет собой активированный фактор V. Некоторые из факторов свертывания не имеют цифровых обозначений.

Процесс свертывания крови принято условно разделять на две основные фазы:

1. Фаза активации — многоступенчатый этап свертывания, завершающийся активизацией протромбина (фактор II) с превращением его в активный фермент тромбин (фактор IIа);

2. Фаза коагуляции — конечный этап свертывания, в результате которого под влиянием тромбина фибриноген (фактор I) превращается в фибрин.

Фаза активации

Центральным звеном сложных химических превращений этой фазы является образование так называемого “активатора протромбина”, который представляет собой ферментный комплекс, состоящий из активированных факторов свертывания Ха, Va, ионов Са2+ и фосфолипопротеидов (рис. 1.94). Источником последних могут быть:

1. Фосфолипопротеиды, высвобождающиеся при повреждении тканей, в частности, эндотелия сосудов или соединительной ткани (тканевой тромбопластин — фактор III).

2. Фосфолипопротеиды мембран тромбоцитов, выходящие в плазму при их разрушении (тромбоцитарный фактор 3). Таким образом, формирование ключевого ферментного комплекса этой фазы — “активатора протромбина” — происходит двумя путями, в соответствии с которыми различают две системы свертывания:

1) Внешняя система, которая активируется при повреждении тканей в течение нескольких секунд. Фосфолипопротеиды, выходящие из тканевых клеток (тканевой тромбопластин, или фактор III), в присутствии ионов Са2+ активируют фактор VII (проконвертин). Последний в комплексе с фосфолипопротеидами поврежденной ткани и ионами Са2+, в свою очередь, активирует фактор Х, входящий затем в состав “активатора протромбина”.

2) Внутренняя система, активация которой происходит несколько медленнее (в течение минут) и без участия тканевого тромбопластина. Пусковым фактором этого механизма является фактор XII (фактор Хагемана), который активируется двумя путями:

а) при контакте крови с коллагеном субэндотелия поврежденного сосуда или с любой чужеродной поверхностью (стеклом, металлом, каолином и т. д.);

б) при ферментативном расщеплении фактора Хагемана протеолитическими ферментами (калликреином, тромбином, трипсином и др.) с участием высокомолекулярного кининогена (ВМК).

Фактор Хагемана (фактор XII) является универсальным активатором всех плазменных протеолитических систем — свертывающей, калликреин-кининовой, фибринолитической и системы комплемента.

Фактор ХIIа активирует фактор XI. Последний, в свою очередь, активирует фактор IX. Наконец, фактор IХа образует ферментный комплекс с фосфолипопротеидами, высвобождающимися при разрушении тромбоцитов (т. е. с тромбоцитарным фактором 3), который в присутствии ионов Са2+ и плазменного фактора VIIIа (фактора Виллебранда) активирует фактор X. Последний также входит в состав “активатора протромбина”. Образовавшийся двумя путями ключевой ферментный комплекс — “активатор протромбина” — протеолитически расщепляет неактивный предшественник протромбин (фактор II) (молекулярная масса 72 000), в результате чего образуется активный протеолитический фермент тромбин (молекулярная масса 35 000), представляющий собой пептидазу. Действие тромбина не ограничивается только протеолизом фибриногена на следующем этапе свертывания крови. Тромбин способствует также необратимой агрегации тромбоцитов (см. выше), а также активирует ряд факторов свертывания (V, VIII, XIII).

Из всех плазменных факторов свертывания лишь фактор VII (проконвертин) используется только во внешнем механизме свертывания. 2) Факторы XII, XI, IX, VIII и прекалликреин участвуют только во внутреннем механизме свертывания. 3) Факторы X, V, II и I используются в обеих (внутренней и внешней) системах свертывания.

Следует помнить, что внешний и внутренний механизмы свертывания взаимосвязаны между собой: между отдельными их этапами существуют своеобразные “мостики” — альтернативные пути для процессов коагуляции. Так, комплекс факторов ХIIа–калликреин–кининоген (внутренний механизм) ускоряет активацию фактора VII (внешний механизм), а фактор VIIa ускоряют активацию фактора IX (внутренний механизм).

Фаза коагуляции

В течение этой фазы происходит образование фибрина из его предшественника фибриногена (рис. 1.94). Процесс протекает в два этапа. На первом из них фибриноген расщепляется тромбином на четыре растворимых мономера фибрина (по два пептида А и В), у каждого из которых имеются по 4 свободные связи. На втором этапе мономеры соединяются друг с другом, формируя полимеры, из которых строятся волокна фибрина. Процесс необратимой полимеризации фибрина происходит с участием фибриностабилизирующего фактора XIII в присутствии ионов Са2+.

Однако на этой стадии трехмерная сеть волокон фибрина, которая содержит эритроциты, тромбоциты и другие клетки крови, все еще относительно рыхлая. Свою окончательную форму она принимает после ретракции сгустка, возникающей при активном сокращении волокон фибрина и выдавливании сыворотки. Благодаря ретракции сгусток становится более плотным и стягивает края раны.