Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
II курс методички / Физика умк.docx
Скачиваний:
94
Добавлен:
20.04.2015
Размер:
1.58 Mб
Скачать

3. Конкретные задания и краткая методика их выполнения

Содержание программы курса физики представлено в виде 5 модулей которыми должен овладеть студент, как при их аудиторном изучении, так и при самостоятельном. Ниже рассматриваются особенности усвоения каждого модуля.

Модуль 1. Физические основы механики.

Приступая к изучению физики, необходимо уяснить, что физика, наряду с другими естественными науками, изучает объективные свойства окружающего нас материального мира. Она исследует наиболее общие формы движения материи и их взаимные преращения. Движение есть форма существования материи. Физические понятия являются простейшими и в то же время основополагающими и всеобщими в естествознании (пространство, время, движение, масса, работа, энергия и др.).

Изучать основы классической механики надо исходя из представлений современной физики, в которой основные понятия классической механики не утратили своего значения, а получили дальнейшее развитие, обобщение и критическую оценку с точки зрения их применения. Следует помнить, что механики – это наука о простейших формах движения материальный тел и происходящих при этом взаимодействиях между ними. Движение всегда существует в пространстве и во времени. Диалектический материализм учит, что пространство и время являются основными формами существования материи. Предметом классической механики является движение макроскопических материальных тел, совершаемое со скоростями, малыми по сравнению со скорость света в вакууме. Движение частиц со скоростями порядка скорости света рассматривается в теории относительности, а движение микрочастиц изучается в квантовой механике.

Вопросы для самоподготовки

  1. Механическое движение. Система отсчёта. Материальная точка. Траектория, путь и перемещение. Скорость и ускорение. Тангенциаль­ная и нормальная составляющие ускорения.

  2. Твёрдое тело. Поступательное и вращательное движение. Угловая скорость и угловое ускорение, их связь с линейными скоростями и ускорениями. Период и частота вращения.

  3. Первый закон Ньютона и инерциальные системы отсчёта. Сила. Второй закон Ньютона. Масса. Импульс. Третий закон Ньютона.

  4. Механическая система. Внутренние и внешние силы. Импульс сис­темы и закон его изменения. Замкнутая система и закон сохранения импульса. Центр масс и закон его движения.

  5. Момент силы и момент импульса относительно точки и оси. Закон изменения момента импульса материальной точки и механической сис­темы. Закон сохранения момента импульса.

  6. Момент импульса твёрдого тела относительно оси вращения. Момент инерции. Теорема Штейнера. Основной закон динамики вращательного движения.

  7. Работа силы. Работа при вращательном движении. Мощность. Кинетическая энергия, закон её изменения. Кинетическая энергия посту­пательного и вращательного движения твёрдого тела.

  8. Консервативные и диссипативные силы. Потенциальная энергия. Закон сохранения энергии в механике. Внутренняя энергия. Общефи­зический закон сохранения энергии.

  9. Принцип относительности и принцип постоянства скорости светя. Относительность длин и промежутков времени. Преобразования Лорен­ца и Галилея. Сложение скоростей.

  10. Основной закон релятивистской динамики. Релятивистский импульс и релятивистская масса. Релятивистское выражение для кинетической энергии. Взаимосвязь массы и энергии. Полная энергия и энергия по­коя.

Студент должен самостоятельно изучить тему: «Элементы механики сплошных сред».

Модуль 2. Молекулярная физика и термодинамика

Изучая физические основы молекулярной физики и термодинамики, студенты должны уяснить, что существуют два качественно различных и взаимодополняющих метода исследования физических свойств макроскопических систем– статистический (молекулярно–кинетический) и термодинамический. Молекулярно– кинетический метод исследования лежит в основе молекулярной физики, термодинамический – в основе термодинамики. Молекулярно– кинетическая теория позволяет с единой точки зрения рассмотреть различные явления во всех состояниях вещества, вскрыть из физическую сущность и теоретическим путем вывести многочисленные закономерности, открытые экспериментально и имеющие большое практическое значение.

При изучении молекулярно–кинетической теории следует уяснить, что свойства огромной совокупности молекул отличны от свойств каждой отдельной молекулы и свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и средними значениями кинематических характеристик частиц, т.е их скоростей, энергий и т.д.

В отличие от молекулярно–кинетической теории, термодинамика не изучает конкретно молекулярные взаимодействия, происходящие с отдельными атомами или молекулами, а рассматривает взаимопревращение и связь различных видов энергии, теплоты и работы. Термодинамика базируется на опытных законах ( началах), которые позволяют описывать физические явления, связанные с превращением энергии макроскопическим путем.

При изучении основ термодинамик студент должен четко усвоить такие понятия, как термодинамическая система, термодинамические параметры ( параметры состояния), равновесное состояние, уравнение состояния, термодинамический процесс, внутренняя энергия ,энтропия и т.д.

Соседние файлы в папке II курс методички