
- •Министерство образования и науки рф
- •Московский государственный университет технологий
- •И управления имени к.Г.Разумовского
- •Кафедра физики
- •Учебно-методический комплекс
- •Рабочая и учебная программа дисциплины
- •Цель и задачи дисциплины
- •Общие требования к содержанию и уровню освоения дисциплины (знания, умения, владения и компетенция обучающихся, сформированные в результате освоения дисциплины (модуля)
- •Трудоёмкость дисциплины и виды учебной работы
- •Содержание дисциплины
- •Учебно–образовательные модули дисциплины, их трудоёмкость и виды учебной работы
- •Дидактический минимум учебно–образовательных модулей дисциплины
- •Содержание учебно–образовательных модулей.
- •Соответствие содержания дисциплины требуемым результатам обучения
- •Лабораторные работы или практические занятия
- •Самостоятельная работа
- •Учебно–методическое и информационное обеспечение дисциплины
- •Материально–техническое обеспечение дисциплины
- •Контроль и оценка результатов обучения
- •Контроль знаний по дисциплине
- •Рейтинговая оценка по дисциплине
- •Модульная карта дисциплины «Физика»
- •Методические рекомендации по организации изучения дисциплины.
- •Глоссарий основных терминов и определений
- •Лабораторный практикум
- •Тематический план лабораторных или практических занятий с указанием цели занятия по каждой теме Тематический план лабораторных работ
- •Матрица компетенций Матрица компетенций лабораторного практикума
- •Текст учебного материала Введение.
- •Основы теории обработки результатов.
- •Погрешности измерения.
- •Модуль 1. Механика Лабораторная работа №2 «Определение ускорения свободного падения»
- •Краткая теория
- •2. Описание установки. Порядок выполнения работы.
- •Протокол лабораторной работы №2.
- •Список рекомендуемой литературы
- •2. Описание установки
- •3. Порядок выполнения работы а. Проверка правильности соотношения
- •Б. Проверка правильности соотношения
- •Протокол лабораторной работы № 3.
- •Вопросы для самопроверки к работе №3
- •2. Порядок выполнения работы.
- •Протокол лабораторной работы №4.
- •В тех точках, где
- •2.Описание установки
- •3. Порядок выполнения работы
- •Протокол лабораторной работы №5
- •Понятие температуры
- •Уравнение Клапейрона-Менделеева и изопроцессы
- •2. Описание прибора
- •3. Порядок выполнения работы
- •Протокол лабораторной работы №6.
- •Вопросы для самопроверки к работе №6
- •Список рекомендуемой литературы
- •Материально-техническое обеспечение
- •Лабораторная работа №7.
- •1. Краткая теория.
- •1. Описание установки.
- •1. Порядок выполнения работы
- •Вопросы для самопроверки к работе №7
- •2. Порядок выполнения работы.
- •Вопросы для самопроверки к работе №8
- •Порядок выполнения работы.
- •Данные установки
- •Протокол лабораторной работы №9
- •Обработка результатов измерений
- •Прилагается к данной работе:
- •Порядок выполнения работы
- •Данные установки
- •Протокол лабораторной работы №10
- •Обработка результатов измерений
- •Вопросы для самопроверки к работе №10
- •Описание аппаратуры и порядок выполнения работы
- •Прибор для исследований состоит из четырехугольной ванны на дне которой помещена координатная сетка и два электрода э.
- •Вопросы для самопроверки к работе №11
- •Порядок выполнения работы.
- •Описание метода измерения и установки.
- •Порядок выполнения работы.
- •Протокол лабораторной работы №15
- •Вопросы для самопроверки к работе №15
- •Принцип Гюйгенса
- •Принцип Гюйгенса - Френеля
- •Метод зон Френеля
- •Дифракция от щели в параллельных лучах
- •Дифракционная решетка
- •Часть I
- •Часть II
- •Протокол лабораторной работы №24
- •Вопросы для самопроверки к работе №24
- •Поляризация при отражении и преломлении
- •Поляризация при двойном лучепреломлением
- •Поляризационная призма Николя
- •Закон Малюса
- •Порядок выполнения работы
- •Протокол лабораторной работы №25
- •Внешний фотоэффект, законы Столетова.
- •Внешний фотоэффект и волновая теория света
- •Уравнение Эйнштейна для внешнего фотоэффекта
- •Внутренний фотоэффект
- •Типы фотоэлементов
- •Протокол лабораторной работы №28
- •Вопросы для самопроверки к работе №28
- •Сериальные формулы
- •Ядерная модель строения атома по Резерфорду
- •Затруднения теории Резерфорда
- •Понятие о квантах и постоянная Планка
- •Постулаты Бора
- •Волны де Бройля
- •Линейчатые спектры по теории Бора
- •Энергетические уровни в атоме
- •Вывод расчетной формулы
- •Описание установки и порядок выполнения работы
- •Порядок выполнения работы
- •Протокол лабораторной работы №26
- •Протокол лабораторной работы №30
- •2. Цель занятий по всему курсу физики
- •3. Конкретные задания и краткая методика их выполнения
- •Вопросы для самоподготовки
- •Вопросы для самоподготовки
- •Вопросы для самоподготовки
- •Вопросы для самоподготовки
- •Вопросы для самоподготовки
- •6. Список рекомендуемой литературы:
- •7. Материально-техническое обеспечение.
- •8. Форма контроля со стороны преподавателя
- •9. Форма отчетности студента за выполненную работу.
- •10.Варианты контрольной работы и рекомендации по написанию и оформлению контрольной работы.
- •11. Порядок представления и защиты контрольной работы у преподавателя.
- •Методические рекомендации по проведению активных форм обучения. Матрица компетенций и темы активных форм обучения
- •2. Активные формы обучения
- •3. Список рекомендуемой литературы
- •4. Материально-техническое обеспечение
- •Тесты по дисциплине (обучающие, контролирующие)
- •Вопросы для подготовки к экзамену и зачету
- •Учебное пособие или краткий курс лекций
- •Карта обеспеченности студентов литературой
- •Модульно–рейтинговая система оценки результатов обучения
- •Модульно-рейтинговая карта дисциплины «Физика»
- •Лист регистрации изменений и дополнений
- •Лист согласования
1. Порядок выполнения работы
Закрыв плотно экран В, открывают кран Е и накачивают в сосуд (или выкачивают) воздух. Закрывают кран Е, ожидают, когда установится постоянное давление воздуха в сосуде. После этого производят отчет разности Η1 уровеня жидкости в коленах манометра. Затем открывают на короткое время кран В, соединяют воздух сосуда с атмосферным воздухом и в момент, когда давление в сосуде будет равно атмосферному, закрывают кран. Снова ожидают, когда установится давление в сосуде после прошедшего адиабатного расширения (или сжатия).
Производят отчет по манометру величины Η2 и вычисляют значение величины γ по формуле (7).
Опыт
повторяют не менее пяти раз и из всех
значений величины определяют среднее
значение
. Все результаты
измерений записывают в таблицу.
Рекомендуемая форма протокола выполнения
лабораторной работы приведены ниже.
Протокол лабораторной работы №7
№ опытов |
|
|
Η1 |
|
|
Η2 |
γ |
Δγ |
1 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
Среднее
значения
Результат:
Вопросы для самопроверки к работе №7
Напишите уравнение I начала термодинамики.
Что такое внутренняя энергия газа?
Что такое молярная теплоемкость при
и
.
Напишите уравнение Майера.
Запишите I начало термодинамики для изохорического, изобарического и изотермического процессов.
Какой процесс называется адиабатным?
Запишите соотношение между P и V, T и V при адиабатном процессе.
Список рекомендуемой литературы
Дмитриева В.Ф., Прокофьев В.Л. Основы физики. – М.: Высшая школа, 2009.
Трофимова Т.И. Курс физики. – М.: Высшая школа, 2010.
Материально-техническое обеспечение
1. Установка для лабораторной работы по молекулярной физике «Определение показателя степени в уравнении Пуассона методом Клемана –Дезорма».
2. Программа для моделирования лабораторной работы на компьютере.
Лабораторная работа №8.
«Определение коэффициента вязкости жидкости по методу Стокса»
Краткая теория.
Движение
молекул газа в термодинамической
равновесной системе полностью хаотично.
Из основных представлений кинетической
теории следует, что газы испытывают в
1 секунду порядка
столкновений
(соударений). Число столкновений (среднее)
за 1с
,
где d – эффективный диаметр молекул газа;
n
– концентрация (т.е. число молекул в
единице объёма);
;
-
средняя арифметическая скорость молекул.
Расстояние,
которое проходит молекула между двумя
последовательными соударениями
называется средней длиной свободного
пробега
;
В газах и жидкостях вследствие хаотичного движения молекул происходит необратимый процесс переноса различных физических величин. Эти явления объединяются общим названием «явление переноса».
I. Перенос массы от мест с более высокой концентрацией молекул к местам с более низкой концентрацией называют диффузией.
Эта масса определяется уравнением:
Здесь
- площадка,
нормальная к потоку продиффундирующему
через неё массыМ;
-
время движения молекул через площадку
;
-
градиент концентрации;
;
- масса одной
молекулы газа;
Д
– коэффициент диффузии:
.
II. Перенос импульса молекулами из соприкасающихся слоёв газа или жидкости, в которых молекулы движутся с разными скоростями в одном направлении, определяют силы внутреннего трения (их называют вязкостью).
Сила внутреннего трения F между двумя слоями жидкости определяется уравнением
,
здесь
- градиент
скорости, т.е. изменение скорости на
единицу длины в направлении осих.
Коэффициент
вязкости
, где
- плотность
газа или жидкости.
III.
Перенос энергии происходит вследствие
хаотичного движения молекул из областей
с более высокой температуры и обладающих
большей энергией ()
в области с более низкой температурой.
Этот процесс называетсятеплопроводностью.
Перенос энергии определяется уравнением
где
Q
– количество теплоты, перенесённое
через изотермическую площадку
за время
;
-
градиент температуры;
х – коэффициент теплопроводности.
;
-
удельная изохорическая теплоёмкость.
При движении тела в вязкой среде возникает сопротивление этому движению. При малых скоростях и обтекаемой форме тела сопротивления обусловлена вязкостью жидкости. Слой жидкости, непосредственно прилегающий к твёрдому телу, прилипает к его поверхности и увлекается им. Следующий слой увлекается за телом с меньшей скоростью. Таким образом, между слоями возникают силы внутреннего трения.
При падении шарика радиуса r в вязкой жидкости, находящеёся в мензурке (рис. 1), на него действует две противоположно направленные силы. Одна из них f обусловлена гравитацией за вычетом выталкивающих (архимедовой) силы. Другая сила F обусловлена внутренним тернием. Из теории следует, что
(1)
(2)
где
- коэффициент
вязкости (или внутреннего трения);
-
плотность вещества шарика;
-
плотности жидкости;
g – ускорение силы тяжести;
-
скорость шарика.
Цель
работы –
измерение вязкости жидкости
методом Стокса.
Как видно из (2), сила растёт с увеличением скорости до тех пор, пока не установится равенство сил f и F:
(3)
С этого момента шарик движется равномерно и прямолинейно (установившиеся движение). Из (3) следует, что коэффициент вязкости
(4)
В
методе Стокса по этой формуле, измерив
r
и
и пользуясь
известными значениями
,
иg,
определяют вязкость жидкости.