
- •С.М.Сухман, а.В.Бернов, б.В.Шевкопляс Компоненты телекоммуникационных систем Анализ инженерных решений
- •Isbn 5-7256-0316-4
- •Isbn 5-7256-0316-4 зао ЗелаксПлюс, 2002
- •Предисловие
- •Взаимодействие устройств типа dte/dce
- •Устройства типа dte и dce: сложности терминологии
- •Логический и физический уровни представления сигналов
- •Основные сигналы интерфейса rs-232
- •О сигнале ri
- •Сигналы TxD, clk, TxC, RxD, RxC
- •Взаимодействие устройств в асинхронном режиме
- •Взаимодействие устройств в синхронном режиме
- •Сравнение методов попутной и встречной синхронизации
- •Когда полезно проинвертировать синхросигнал
- •Пары сигналов dtr – dsr и dtr – dcd
- •Сигналы rts и cts
- •Прямое назначение . . .
- •. . . И альтернативное
- •Программное управление потоком данных
- •Трехпроводный вариант интерфейса rs-232
- •Электрические уровни сигналов rs-232
- •Взаимодействие одноименных устройств в асинхронном режиме
- •Варианты сопряжения двух устройств типа dte
- •Пример сопряжения двух устройств типа dce
- •Схемы взаимодействия устройств типа dte и dce в синхронном режиме: типовые решения
- •Вводные замечания
- •Системы с внутренней синхронизацией
- •Системы с внешней синхронизацией
- •Использование модема как устройства типа dte
- •Cистема с двумя последовательно включенными каналами связи
- •Схемы взаимодействия устройств типа dte и dce в синхронном режиме: нестандартные решения
- •Асинхронно-синхронная передача данных между устройствами типа dte и dce
- •Синхронный обмен данными с передачей кадровых меток
- •Повышение быстродействия и расширение функциональных возможностей системы с попутной синхронизацией
- •Объект модернизации – схема передачи пары сигналов TxD – clk
- •Удвоение скорости передачи данных с использованием для их приема положительного и отрицательного фронтов сигнала clk
- •Удвоение скорости передачи данных заменой сигнала clk сигналом разграничения одноименных битов
- •Расширение функциональных возможностей системы с разграничением одноименных битов
- •Создание дополнительного канала связи
- •Использование дополнительного канала связи для разграничения кадров
- •Аппаратное управление потоком данных с использованием пачек сигналов ТхС
- •Цифровая коррекция фазы сигнала от удаленного синхрогенератора
- •Выравнивание фаз передаваемого и принимаемого синхросигналов
- •Передача синхросигнала против течения потока данных
- •Взаимодействие удаленных устройств с непосредственной односторонней передачей синхросигнала по каналу связи
- •Синхронизация передачи данных между удаленными устройствами
- •Вводные замечания
- •Основная задача и ее универсальное решение
- •Проявления проскальзываний синхронизации для разных типов данных или технологий их передачи
- •Источники обновляемой синхронизации
- •Генераторы сигналов высокой точности и стабильности
- •Фазовые помехи
- •Адаптивный фильтр для подавления джиттера – вандера
- •Синхронизация дуплексных каналов
- •Зацикливание синхросигналов
- •Автоматическое предотвращение зацикливания синхросигналов
- •Синхронизация кольцевых структур
- •Отказоустойчивая система синхронизации сети с кольцевой топологией
- •Синхронизация передачи данных: распознавание и обработка кадров или иных структурных единиц
- •Передача полезных данных вместо избыточных битов синхронизации кадра
- •Частичное восстановление кадра при обнаружении проскальзывания
- •Битовые проскальзывания
- •Структура кадра, применяемого в системе мобильной связи gsm
- •Как по возможности сохранить кадр
- •Упрощение системы синхронизации формирователя hdsl-кадров
- •Минимизация длины флага
- •Традиционное решение с использованием многоразрядного флага
- •Использование одноразрядного флага для обозначения начала кадра
- •Вхождение в синхронизацию
- •Потеря и восстановление синхронизации
- •Использование раздробленного флага начала кадра
- •Применение неуникального флагового кода
- •Построение кросс-корреляционной матрицы для распознавания раздробленного флага
- •Поиск флага в потоке данных, передаваемых по волоконно-оптической линии связи
- •Поиск начала асинхронного сообщения
- •Обнаружение и исправление ошибок синхронизации при передаче непрерывного асинхронного потока данных
- •Распознавание межбайтовых границ в непрерывном синхронном потоке данных
- •Объединение удаленных сегментов сети Ethernet 10 BaseT
- •Структура сети Ethernet 10 BaseT
- •Как построить мост
- •Обмен кадрами через мост
- •Транспортная сеть
- •Преобразование кадра при его передаче между сегментами сети
- •Синхронизация передачи данных: способы кодирования
- •Основные способы кодирования цифровой информации для ее передачи по последовательным каналам связи
- •Структура последовательного канала связи
- •Униполярный код nrz
- •Биполярный код nrz
- •Код “Манчестер-II”
- •Код ami
- •Коды bnzs, hdb3
- •Трехуровневое кодирование сигнала с гарантированным изменением уровней между соседними битовыми интервалами
- •Способ кодирования сигнала для уменьшения излучаемых помех при его передаче по линии
- •Передача данных с использованием скремблера – дескремблера
- •Генераторы псевдослучайных битовых последовательностей
- •Скремблер – дескремблер с неизолированными генераторами псевдослучайных битовых последовательностей
- •Скремблер – дескремблер с изолированными генераторами псевдослучайных битовых последовательностей
- •Скремблер – дескремблер с неизолированными генераторами – улучшенный вариант
- •Синхронизация изолированных генераторов скремблера – дескремблера
- •Выделение синхросигнала и данных из канала связи
- •Одноконтурная и двухконтурные схемы выделения синхросигнала
- •Шифратор и дешифратор кода “Манчестер-II”
- •Вводные замечания
- •Схемы шифратора и дешифратора
- •Распознавание ячеек атм в битовом и байтовом потоках данных
- •Структура ячейки
- •Использование кода crc в процессе распознавания границ ячеек
- •Формирование заголовка ячейки передатчиком
- •Проверка правильности заголовка ячейки приемником
- •Поиск заголовка в непрерывном битовом потоке данных
- •Поиск заголовка в непрерывном байтовом потоке данных
- •Размещение ячейки внутри кадра
- •Логические соотношения для перехода от битового потока данных к байтовому
- •Мозаика решений
- •Сопряжение разноскоростных компонентовсинхронных систем без использования буфера типа fifo
- •Одноканальная система
- •Система с мультиплексированием каналов
- •Устранение проскальзываний синхронизации при передаче речевых сигналов
- •Идея использования периодов “тишины”
- •Прохождение сигнала по тракту микрофон – динамик
- •Детектор тишины
- •Поведение системы в экстремальных ситуациях
- •Идея устранения проскальзываний с помощью цап – ацп
- •Самообучающийся генератор синхросигналов
- •Усовершенствование измерителей длины кабельных линий передачи данных
- •Объект модернизации – рефлектометр
- •Измеритель длины кабельной линии передачи данных – первый вариант
- •Измеритель длины кабельной линии передачи данных – второй вариант
- •Литература
- •Оглавление
Передача данных с использованием скремблера – дескремблера
Скремблирование может выполняться с различными целями. Наиболее распространенная цель – защита передаваемых данных от несанкционированного доступа. Для ее достижения разработано множество методов кодирования и схемных решений. Но нас интересует иная задача, связанная с “разравниванием” спектра сигнала и повышением надежности синхронизации приемника с источником передаваемых по линии данных. Применительно к этой задаче цель скремблирования состоит в исключении из потока данных длинных последовательностей лог. 0, лог. 1 и периодически повторяющихся групп битов. Для этого необходимо преобразовать данные так, чтобы они выглядели как случайные, т.е. лишенные какой-либо видимой закономерности.
Генераторы псевдослучайных битовых последовательностей
Скремблеры и дескремблеры обычно построены на основе генераторов псевдослучайных битовых последовательностей. Пример такого генератора приведен на рис.6.9 [55]. Генератор выполнен на основе кольцевого сдвигового регистра RG с логическим элементом Исключающее ИЛИ (XOR) в цепи обратной связи. Если в исходном состоянии в регистре присутствует любой ненулевой код, то под действием синхросигнала CLK этот код будет непрерывно циркулировать в регистре и одновременно видоизменяться. В качестве выхода генератора можно также использовать выход любого разряда регистра.
В общем случае в М-разрядном регистре обратная связь подключается к разрядам с номерами М и N (М N). Выбор оптимального значения N для заданного M – непростая задача. К счастью, она уже решена. Вариант таблицы выбора N приведен на рис.6.9. Таблица описывает ряд генераторов различной разрядности. Каждый генератор формирует последовательность битов с максимальным периодом повторения, равным 2М – 1. В такой последовательности встречаются все М-разрядные коды, за исключением нулевого. Этот код представляет собой своеобразную “ловушку” для данной схемы: если бы нулевой код появился в регистре, дальнейшая последовательность битов была бы также нулевой. Но при нормальной работе генератора попадания в ловушку не происходит. (Усовершенствованные генераторы, не имеющие запрещенных состояний, рассмотрены в [62].)
Последовательность максимальной длины обладает следующими свойствами.
1. В полном цикле (2М – 1 тактов) число лог. 1 на единицу больше, чем число лог. 0. Добавочная лог. 1 появляется за счет исключения состояния, при котором в регистре присутствовал бы нулевой код. Это можно интерпретировать так, что вероятности появления на выходе регистра лог. 0 и лог. 1 практически одинаковы.
2.
В полном цикле (2М
– 1 тактов) половина серий из последовательных
лог. 1 имеет длину 1, одна четвертая серий
– длину 2,
одна восьмая – длину 3 и
т.д.
Рис.6.9. Обобщенная схема генератора псевдослучайной битовой последовательности максимальной длины и таблица для выбора промежуточной точки подключения обратной связи
Такими же свойствами обладают и серии из лог. 0 с учетом пропущенного лог. 0. Это говорит о том, что вероятности появления “орлов” и “решек” не зависят от исходов предыдущих “подбрасываний”. Поэтому вероятность того, что серия из последовательных лог. 1 или лог. 0 закончится при следующем подбрасывании, равна 1/2 вопреки обывательскому пониманию “закона о среднем”.
3. Если последовательность полного цикла (2М – 1 тактов) сравнивать с этой же последовательностью, но циклически сдвинутой на любое число тактов W (W не является нулем или числом, кратным 2М – 1), то число несовпадений будет на единицу больше, чем число совпадений.
Наиболее распространены две основные схемы построения пар “скремблер – дескремблер”: с неизолированными и изолированными генераторами псевдослучайных битовых последовательностей. Рассмотрим эти схемы и их модификации.