
- •С.М.Сухман, а.В.Бернов, б.В.Шевкопляс Компоненты телекоммуникационных систем Анализ инженерных решений
- •Isbn 5-7256-0316-4
- •Isbn 5-7256-0316-4 зао ЗелаксПлюс, 2002
- •Предисловие
- •Взаимодействие устройств типа dte/dce
- •Устройства типа dte и dce: сложности терминологии
- •Логический и физический уровни представления сигналов
- •Основные сигналы интерфейса rs-232
- •О сигнале ri
- •Сигналы TxD, clk, TxC, RxD, RxC
- •Взаимодействие устройств в асинхронном режиме
- •Взаимодействие устройств в синхронном режиме
- •Сравнение методов попутной и встречной синхронизации
- •Когда полезно проинвертировать синхросигнал
- •Пары сигналов dtr – dsr и dtr – dcd
- •Сигналы rts и cts
- •Прямое назначение . . .
- •. . . И альтернативное
- •Программное управление потоком данных
- •Трехпроводный вариант интерфейса rs-232
- •Электрические уровни сигналов rs-232
- •Взаимодействие одноименных устройств в асинхронном режиме
- •Варианты сопряжения двух устройств типа dte
- •Пример сопряжения двух устройств типа dce
- •Схемы взаимодействия устройств типа dte и dce в синхронном режиме: типовые решения
- •Вводные замечания
- •Системы с внутренней синхронизацией
- •Системы с внешней синхронизацией
- •Использование модема как устройства типа dte
- •Cистема с двумя последовательно включенными каналами связи
- •Схемы взаимодействия устройств типа dte и dce в синхронном режиме: нестандартные решения
- •Асинхронно-синхронная передача данных между устройствами типа dte и dce
- •Синхронный обмен данными с передачей кадровых меток
- •Повышение быстродействия и расширение функциональных возможностей системы с попутной синхронизацией
- •Объект модернизации – схема передачи пары сигналов TxD – clk
- •Удвоение скорости передачи данных с использованием для их приема положительного и отрицательного фронтов сигнала clk
- •Удвоение скорости передачи данных заменой сигнала clk сигналом разграничения одноименных битов
- •Расширение функциональных возможностей системы с разграничением одноименных битов
- •Создание дополнительного канала связи
- •Использование дополнительного канала связи для разграничения кадров
- •Аппаратное управление потоком данных с использованием пачек сигналов ТхС
- •Цифровая коррекция фазы сигнала от удаленного синхрогенератора
- •Выравнивание фаз передаваемого и принимаемого синхросигналов
- •Передача синхросигнала против течения потока данных
- •Взаимодействие удаленных устройств с непосредственной односторонней передачей синхросигнала по каналу связи
- •Синхронизация передачи данных между удаленными устройствами
- •Вводные замечания
- •Основная задача и ее универсальное решение
- •Проявления проскальзываний синхронизации для разных типов данных или технологий их передачи
- •Источники обновляемой синхронизации
- •Генераторы сигналов высокой точности и стабильности
- •Фазовые помехи
- •Адаптивный фильтр для подавления джиттера – вандера
- •Синхронизация дуплексных каналов
- •Зацикливание синхросигналов
- •Автоматическое предотвращение зацикливания синхросигналов
- •Синхронизация кольцевых структур
- •Отказоустойчивая система синхронизации сети с кольцевой топологией
- •Синхронизация передачи данных: распознавание и обработка кадров или иных структурных единиц
- •Передача полезных данных вместо избыточных битов синхронизации кадра
- •Частичное восстановление кадра при обнаружении проскальзывания
- •Битовые проскальзывания
- •Структура кадра, применяемого в системе мобильной связи gsm
- •Как по возможности сохранить кадр
- •Упрощение системы синхронизации формирователя hdsl-кадров
- •Минимизация длины флага
- •Традиционное решение с использованием многоразрядного флага
- •Использование одноразрядного флага для обозначения начала кадра
- •Вхождение в синхронизацию
- •Потеря и восстановление синхронизации
- •Использование раздробленного флага начала кадра
- •Применение неуникального флагового кода
- •Построение кросс-корреляционной матрицы для распознавания раздробленного флага
- •Поиск флага в потоке данных, передаваемых по волоконно-оптической линии связи
- •Поиск начала асинхронного сообщения
- •Обнаружение и исправление ошибок синхронизации при передаче непрерывного асинхронного потока данных
- •Распознавание межбайтовых границ в непрерывном синхронном потоке данных
- •Объединение удаленных сегментов сети Ethernet 10 BaseT
- •Структура сети Ethernet 10 BaseT
- •Как построить мост
- •Обмен кадрами через мост
- •Транспортная сеть
- •Преобразование кадра при его передаче между сегментами сети
- •Синхронизация передачи данных: способы кодирования
- •Основные способы кодирования цифровой информации для ее передачи по последовательным каналам связи
- •Структура последовательного канала связи
- •Униполярный код nrz
- •Биполярный код nrz
- •Код “Манчестер-II”
- •Код ami
- •Коды bnzs, hdb3
- •Трехуровневое кодирование сигнала с гарантированным изменением уровней между соседними битовыми интервалами
- •Способ кодирования сигнала для уменьшения излучаемых помех при его передаче по линии
- •Передача данных с использованием скремблера – дескремблера
- •Генераторы псевдослучайных битовых последовательностей
- •Скремблер – дескремблер с неизолированными генераторами псевдослучайных битовых последовательностей
- •Скремблер – дескремблер с изолированными генераторами псевдослучайных битовых последовательностей
- •Скремблер – дескремблер с неизолированными генераторами – улучшенный вариант
- •Синхронизация изолированных генераторов скремблера – дескремблера
- •Выделение синхросигнала и данных из канала связи
- •Одноконтурная и двухконтурные схемы выделения синхросигнала
- •Шифратор и дешифратор кода “Манчестер-II”
- •Вводные замечания
- •Схемы шифратора и дешифратора
- •Распознавание ячеек атм в битовом и байтовом потоках данных
- •Структура ячейки
- •Использование кода crc в процессе распознавания границ ячеек
- •Формирование заголовка ячейки передатчиком
- •Проверка правильности заголовка ячейки приемником
- •Поиск заголовка в непрерывном битовом потоке данных
- •Поиск заголовка в непрерывном байтовом потоке данных
- •Размещение ячейки внутри кадра
- •Логические соотношения для перехода от битового потока данных к байтовому
- •Мозаика решений
- •Сопряжение разноскоростных компонентовсинхронных систем без использования буфера типа fifo
- •Одноканальная система
- •Система с мультиплексированием каналов
- •Устранение проскальзываний синхронизации при передаче речевых сигналов
- •Идея использования периодов “тишины”
- •Прохождение сигнала по тракту микрофон – динамик
- •Детектор тишины
- •Поведение системы в экстремальных ситуациях
- •Идея устранения проскальзываний с помощью цап – ацп
- •Самообучающийся генератор синхросигналов
- •Усовершенствование измерителей длины кабельных линий передачи данных
- •Объект модернизации – рефлектометр
- •Измеритель длины кабельной линии передачи данных – первый вариант
- •Измеритель длины кабельной линии передачи данных – второй вариант
- •Литература
- •Оглавление
Код “Манчестер-II”
Примером кода с избыточностью, введенной согласно только что упомянутому первому способу, является код “Манчестер-II”. Форма биполярного сигнала при передаче кода “Манчестер-II” показана на рис.6.2,в. Единица кодируется отрицательным перепадом сигнала в середине битового интервала, нуль – положительным перепадом. На границах битовых интервалов сигнал, если это необходимо, изменяет значение, готовясь к отображению очередного бита в середине следующего битового интервала.
С помощью кода “Манчестер-II” решаются сразу все отмеченные ранее проблемы. Поскольку число положительных и отрицательных импульсов на любом достаточно большом отрезке времени равно (отличается не более чем на один импульс, что не имеет значения), постоянная составляющая равна нулю.
Подстройка часов приемника или ретранслятора производится при передаче каждого бита, т.е. снимается проблема потери синхронизации при передаче длинных цепочек нулей или единиц.
Спектр сигнала содержит только две логические составляющие: F и 2F, где F – скорость передачи информационных битов. Наличие лишь двух (а не трех или более) электрических уровней сигнала позволяет надежно их распознавать (хорошая помехозащищенность).
Критерием ошибки может являться “замораживание” сигнала на одном уровне на время, превышающее время передачи одного информационного бита, поскольку независимо от передаваемого кода сигнал всегда “колеблется” и никогда не “замирает”. Но за эти чрезвычайно полезные качества приходится платить удвоением требуемой частотной полосы связной аппаратуры. Поэтому код “Манчестер-II” широко используется там, где частотные ограничения не являются определяющими.
Код ami
Второй способ введения избыточности связан с добавлением дополнительных электрических уровней, в простейшем случае – третьего, “нулевого”, уровня.
На рис.6.2,г представлена форма сигнала с попеременной инверсией знака, так называемого AMI сигнала (Alternative Mark Inversion). Нули кодируются отсутствием импульсов, а единицы – попеременно положительными и отрицательными импульсами. Постоянная составляющая сигнала AMI равна нулю. Поэтому при передаче длинной последовательности единиц синхронизация не теряется. Обнаруживаются ошибки, нарушающие правильную последовательность знакочередующихся сигналов.
Синхронизация нарушается при передаче длинной последовательности нулей, как и в коде NRZ.
Коды bnzs, hdb3
Потеря синхронизации при передаче длинной последовательности нулей предотвращается так: цепочки нулей передатчик заменяет определенными “заготовками”, которые представляют собой “отрезки” стандартных временных диаграмм. Коды AMI, в которых цепочка из N нулей заменяется определенной подстановкой, называются BNZS-кодами (Bipolar with N Zeroes Substitution).
В коде B3ZS (рис.6.2,д) каждые три последовательных нуля подменяются либо комбинацией B0V, либо 00V. Символ В обозначает импульс, который отвечает правилам кодирования AMI, символ V ‑ импульс, который нарушает правила кодирования AMI (совпадает по полярности с предыдущим).
Выбор одной из этих двух “заготовок” проводится так, чтобы, во-первых, число импульсов В между двумя последовательно расположенными импульсами V было нечетным, и, во-вторых, чтобы полярность импульсов V чередовалась.
В коде B6ZS (рис.6.2,е) каждые шесть последовательных нулей подменяются комбинацией 0VB0VB.
Коды BNZS получили широкое распространение в компьютерных сетях США и Канады: линии Т1 – 1,544 Мбит/с, Т1С – 3,152 Мбит/с, LD-4 – 274,176 Мбит/с, Т4 – 274,176 Мбит/с. В странах Западной Европы широко используется код HDB3 для работы на скоростях 2,048 и 8,448 Мбит/с. Этот код очень похож на BNZS, поскольку максимально допустимое число нулей, стоящих в цепочке, равно трем.
Каждые четыре последовательных нуля подменяются комбинацией 000V либо B00V. Выбор той или иной комбинации проводится так, чтобы, во-первых, число импульсов В между двумя последовательными импульсами V было нечетным, и, во-вторых, чтобы полярность импульсов V чередовалась (рис.6.2,ж).
Существуют также другие распространенные коды, такие как CMI, PST, 4B3T и т.п. Все они являются разновидностями кодов AMI и созданы с целью минимизации требований к полосе пропускания каналов связи и увеличения обнаруживающей способности по отношению к ошибкам при передаче информации.