Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Специальная теория относительности.docx
Скачиваний:
41
Добавлен:
16.04.2015
Размер:
373.6 Кб
Скачать

Специальная теория относительности, созданная Эйнштейном в 1905 году, по своему основному содержанию может быть названа физическим учением о пространстве и времени. Физическим потому, что свойства пространства и

времени в этой теории рассматриваются в теснейшей связи с законами

совершающихся в них физических явлений. Термин «специальная»

подчеркивает то обстоятельство, что эта теория рассматривает явления только в инерциальных системах отсчета.

Прежде чем перейти к ее изложению, сформулируем основные принципы

ньютоновской механики:

1) Пространство имеет 3 измерения; справедлива евклидова геометрия.

2) Время существует независимо от пространства в том смысле, в котором

независимы три пространственных измерения.

3) Промежутки времени и размеры тел не зависят от системы отсчета

4) Признается справедливость закона инерции Ньютона - Галилея ( I закон

Ньютона )

5) При переходе от одной ИСО к другой справедливы преобразования Галилея для координат, скоростей и времени.

6) Выполняется принцип относительности Галилея: все инерциальные системы отсчета эквивалентны друг другу в отношении механических явлений.

7) Соблюдается принцип дальнодействия: взаимодействия тел распространяются мгновенно, то есть с бесконечной скоростью.

Эти представления ньютоновской механики вполне соответствовали всей

совокупности экспериментальных данных, имевшихся в то время.

Однако обнаружилось, что в ряде случаев механика Ньютона не работала. Первым подвергся проверке закон сложения скоростей. Принцип относительности Галилея утверждал, что все ИСО эквивалентны по своим механическим свойствам. Но их, наверное, можно отличить по электромагнитным или каким-либо другим свойствам. Например,

можно заняться экспериментами по распространению света. В соответствии с

существовавшей в то время волновой теории существовала некая абсолютная

система отсчета( так называемый «эфир»), в которой скорость света была равна

с. Во всех остальных системах скорость света должна была подчиняться

закону с’ = c - V. Это предположение взялись проверить сначала Майкельсон, а затем и Морли. Целью эксперимента являлось обнаружение « истинного »

движения Земли относительно эфира. Было использовано движение Земли по

орбите со скоростью 30 км в секунду.

время прохождения расстояния SAS

В качестве исходных позиций специальной теории относительности Эйнштейн

принял два постулата, или принципа, в пользу которых говорит весь

экспериментальный материал (и в первую очередь опыт Майкельсона):

1) принцип относительности,

2)независимость скорости света от скорости источника.

Первый постулат представляет собой обобщение принципа относительности

Галилея на любые физические процессы:

все физические явления протекают одинаковым образом во всех инерциальных

системах отсчета; все законы природы и уравнения, их описывающие,

инвариантны, т. е. не меняются, при переходе от одной инерциальной

системы отсчета к другой.

Другими словами, все инерциальные системы отсчета эквивалентны

(неразличимы) по своим, физическим свойствам; никаким опытом нельзя в

принципе выделить ни одну из них как предпочтительную.

Второй постулат утверждает, что скорость света в вакууме не зависит от

движения источника света и одинакова во всех направлениях.

Это значит, что, скорость света в вакууме одинакова во всех ИСО. Таким

образом, скорость света занимает особое положение в природе. В отличие от

всех других скоростей, меняющихся при переходе от одной системы отсчета к

другой, скорость света в пустоте является инвариантной величиной. Как мы

увидим, наличие такой скорости существенно изменяет представления о

пространстве и времени.

Из постулатов Эйнштейна следует также, что скорость света в вакууме является

предельной: никакой сигнал, никакое воздействие одного тела на другое не

могут распространяться со скоростью, превышающей скорость света в вакууме.

Именно предельный характер этой скорости и объясняет одинаковость

скорости света во всех системах отсчета. В самом деле, согласно принципу

относительности, законы природы должны быть одинаковы во всех

инерциальных системах отсчета. Тот факт, что скорость любого сигнала не

может превышать предельное значение, есть также закон природы.

Следовательно, значение предельной скорости—скорости света в вакууме—

.должно быть одинаково во всех инерциальных системах отсчета: в противном

случае эти системы можно было бы отличить друг от друга.__

Преобразования Лоренца

Пусть нам даны две системы отсчета k и k`. В момент t = О обе эти системы координат совпадают. Пусть система k` (назовем ее подвижной) движется так, что ось х` скользит по оси х, ось у` параллельна оси у, скорость v - скорость движения этой системы координат (рис. 109).

Точка М имеет координаты в системе k - х, у, z, a в системе k` - х`, у`, z`.

Преобразования Галилея в классической механике имеют вид:

Преобразования координат, удовлетворяющие постулатам специальной теории относительности, называются преобразованиями Лоренца.

Впервые они (в несколько иной форме) были предложены Лоренцем для объяснения отрицательного эксперимента Майкельсона-Морли и для придания уравнениям Максвелла одинакового вида во всех инерциальных системах отсчета.

Эйнштейн вывел их независимо на основе своей теории относительности. Подчеркнем, что изменилась (по сравнению с преобразованием Галилея) не только формула преобразования координаты х, но и формула преобразований времени t. Из последней формулы непосредственно видно, как переплетены пространственная и временная координаты.

Следствия из преобразований Лоренца

  1. Длина движущегося стержня.

Предположим, что стержень расположен вдоль оси х` в системе k` и движется вместе с системой k` со скоростью v.

Разность между координатами конца и начала отрезка в системе отсчета, в которой он неподвижен, называется собственной длиной отрезка. В нашем случае l0 = х2` - х1`, где х2` - координата конца отрезка в системе k` и х/ - координата начала. Относительно системы k стержень движется. Длиной движущегося стержня принимают разность между координатами конца и начала стержня в один и тот же момент времени по часам системы k.

где l - длина движущегося стержня, l0 - собственная длина стержня. Длина движущегося стержня меньше собственной длины.

  1. Темп хода движущихся часов.

Пусть в точке х0` движущейся системы координат k` происходит последовательно два события в моменты t/ и t2. В неподвижной системе координат k эти события происходят в разных точках в моменты t1 и t2. Интервал времени между этими событиями в движущейся системе координат равен дельта t` = t2` - t1`, а в покоящейся дельта t = t2 - t1.

На основании преобразования Лоренца получим:

Интервал времени дельта t` между событиями, измеренный движущимися часами, меньше, чем интервал времени дельта t между теми же событиями, измеренный покоящимися часами. Это означает, что темп хода движущихся часов замедлен относительно неподвижных.

Время, которое измеряется по часам, связанным с движущейся точкой, называется собственным временем этой точки.

  1. Относительность одновременности.

Из преобразований Лоренца следует, что если в системе k в точке с координатами x1 и х2 происходили два события одновременно (t1 = t2 = t0), то в системе k` интервал

понятие одновременности - понятие относительное. События, одновременные в одной системе координат, оказались неодновременными в другой.

  1. Относительность одновременности и причинность.

Из относительности одновременности следует, что последовательность одних и тех же событий в различных системах координат различна.

Не может ли случиться так, что в одной системе координат причина предшествует следствию, а в другой, наоборот, следствие предшествует причине?

Чтобы причинно-следственная связь между событиями имела объективный характер и не зависела от системы координат, в которой она рассматривается, необходимо, чтобы никакие материальные воздействия, осуществляющие физическую связь событий, происходящих в различных точках, не могли передаваться со скоростью, большей скорости света.

Таким образом, передача физического влияния из одной точки в другую не может происходить со скоростью, большей скорости света. При этом условии причинная связь событий носит абсолютный характер: не существует системы координат, в которой причина и следствие меняются местами.