Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература / Криптография с открытым ключом (А. Саломаа)

.pdf
Скачиваний:
79
Добавлен:
16.04.2013
Размер:
1.35 Mб
Скачать

1.2. oDNOALFAWITNYE SISTEMY

21

nA[ KRIPTOANALITIK SDELAL GRUBU@ O[IBKU, KOTORAQ MOGLA PRIWESTI K LOVNYM DEJSTWIQM!

2

pRODOLVIM NA[ SPISOK WOZMOVNYH NA^ALXNYH USLOWIJ KRIPTOANALIZA.

uSLOWIE (4): iZWESTEN KL@^ ZA[IFROWANIQ. kRIPTOANALITIK ZNAET ALGOpITM ZA[IFROWANIQ Ek I STARAETSQ NAJTI SOOTWETSTWU@]IJ ALGOpITM pAS[IFROWANIQ Dk DO REALXNOGO POLU^ENIQ L@BOGO OBRAZCA KRIPTOTEKSTA.

uSLOWIE (4) O^ENX TIPI^NO DLQ KRIPTOSISTEM S OTKRYTYM KL@^OM. aLGOpITM ZA[IFROWANIQ Ek MOVET BYTX OPUBLIKOWAN ZARANEE, I MOVET PROJTI NESKOLXKO MESQCEW DO TOGO, KAK Ek BUDET ISPOLXZOWAN DLQ [I- FROWANIQ WAVNYH SOOB]ENIJ. tAKIM OBRAZOM, KRIPTOANALITIK OBY^NO IMEET MNOGO WREMENI DLQ PREDWARITELXNOGO KRIPTOANALIZA (POISKA AL-

GOpITMA pAS[IFROWANIQ), W TO WREMQ KAK PpI POQWLENII SOOB]ENIJ EMU PRIHODITSQ DEJSTWOWATX W USLOWIQH NEDOSTATKA WpEMENI. oSOBENNO CENNYM QWLQETSQ ZAWER[ENIE POISKA W PERIOD, KOGDA \WpEMQ DE[EWO".

w NEKOTORYH KRIPTOSISTEMAH S OTKRYTYM KL@^OM NEWOZMOVNO POSTROITX Dk IZ Ek, POTOMU ^TO NELXZQ RASPOZNATX WERNOE Dk SREDI NESKOLXKIH WApIANTOW. dLQ \TOJ CELI NEOBHODIMO IMETX NESKOLXKO OBpAZCOW KpIPTOTEKSTA. w DRUGIH KRIPTOSISTEMAH S OTKRYTYM KL@^OM ALGOpITM ZA[IFROWANIQ Dk MOVET BYTX NAJDEN IZ Ek, ESLI TOLXKO O^ENX SILXNO POWEZET, NAPRIMER, UGADATX MNOVITELI IZ PROIZWEDENIQ DWUH BOLX[IH PROSTYH ^ISEL.

1.2. oDNOALFAWITNYE SISTEMY

w \TOJ GLAWE OBSUVDA@TSQ KLASSI^ESKIE KRIPTOSISTEMY, W OTLI^IE OT KRIPTOSISTEM S OTKRYTYM KL@^OM, I ZAKLADYWA@TSQ OSNOWY, NEOBHODIMYE DLQ ^TENIQ OSNOWNYH ^ASTEJ KNIGI. zDESX MY UDELIM WNIMANIE OBOIM MIRAM KRIPTOGRAFII.

nAPOMNIM O RAZLI^II MEVDU KLASSI^ESKIMI KpIPTOSISTEMAMI I KRIPTOSISTEMAMI S OTKRYTYM KL@^OM. w PEpWYH KL@^ pAS[IFROWANIQ Dk LEGKO MOVET BYTX WY^ISLEN IZ KL@^A ZA[IFROWANIQ Ek, W TO WREMQ KAK W KRIPTOSISTEME S OTKRYTYM KL@^OM Ek MOVET BYTX OPUBLIKOWAN BEZ POTERI SEKRETNOSTI Dk. pO \TOJ PRI^INE KLASSI^ESKIE SISTEMY ^A- STO TAKVE NAZYWA@T KAK SIMMETRI^NYE, ILI DWUSTORONNIE, A SISTEMY S OTKRYTYM KL@^OM | KAK NESIMMETRI^NYE, ILI ODNOSTORONNIE.

oBSUDIM NESKOLXKO WAVNYH POLOVENIJ. dO SIH POR MY NE KOMMENTIROWALI USLOWIE (3) DLQ HORO[EJ KRIPTOSISTEMY, WYDWINUTOE S\ROM

22

gLAWA 1. kLASSIˆESKAQ KRIPTOGRAFIQ

fR\NSISOM bEKONOM: KRIPTOTEKST NE DOLVEN WYZYWATX PODOZRENIJ, T.E. DOLVEN WYGLQDETX ESTESTWENNO.

w NA[I DNI I KRIPTOTEKST, I ISHODNOE SOOB]ENIE | \TO POSLEDOWATELXNOSTX NEPONQTNYH NA PERWYJ WZGLQD BITOW, PO\TOMU DANNOE TREBOWANIE UVE NE QWLQETSQ WAVNYM. pOSLEDOWATELXNOSTX BITOW OBY^NO NE BOLEE NEWINNA, ^EM DRUGAQ POSLEDOWATELXNOSTX! tEM NE MENEE W PRO[LOM \TO TREBOWANIE O^ENX ^ASTO PRINIMALOSX W RAS^ET.

lU^[IM METODOM, UDOWLETWORQ@]IM DANNOMU TREBOWANI@, QWLQETSQ ALGOpITM \POSREDI MUSORA". rEALXNOE SOOB]ENIE ([IFROWANNOE ILI NET) POPOLNQETSQ \MUSORNYMI BUKWAMI", KOTORYE SOWER[ENNO NE OTNOSQTSQ K SOOB]ENI@, NO DELAETSQ \TO TAK, ^TOBY WSE SOOB]ENIE WYGLQDELO NEWINNO.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

rIS. 1.3.

rI[ELXE ISPOLXZOWAL LISTY KARTONA S PROREZQMI. zNA^IMYMI QWLQLISX TOLXKO BUKWY, WIDIMYE ^EREZ PROREZI. i OTPRAWITELX, I POLU^A- TELX IMELI ODINAKOWYE LISTKI. oDIN TAKOJ LIST IZOBRAVEN NA RIS. 1.3. lIST POKRYWAET U^ASTOK TEKSTA, ZAKL@^ENNOGO W PRQMOUGOLXNIK S SEMX@ STROKAMI I DESQTX@ STOLBCAMI, WSEGO 70 SIMWOLOW TEKSTA. dLQ DLINNYH SOOB]ENIJ LISTOK PRIMENQLSQ NESKOLXKO RAZ. pROREZI RAZME- ]A@TSQ W POZICIQH

(1; 8); (2; 9); (3; 6); (4; 5); (4; 6); (5; 1); (5; 6) ;

(5; 7); (5; 9); (6; 2); (6; 10); (7; 9); (7; 10) :

sLEDU@]IJ TEKST WYGLQDIT KAK NEWINNOE L@BOWNOE PISXMO:

1.2. oDNOALFAWITNYE SISTEMY

 

 

 

 

 

23

I

 

L

O

V

E

 

Y

O

U

I

 

H

A

V

E

 

Y

O

U

D

E

E

P

 

U

N

D

E

R

M

Y

 

S

K

I

N

 

M

Y

L

O

V

E

 

L

A

S

T

S

F

O

R

E

V

E

R

 

I

N

H

Y

P

E

R

S

P

A

C

E

oDNAKO, ISPOLXZUQ KRIPTOSISTEMU rI[ELXE (LISTOK NA RIS. 1.3), POLU- ^IM ZLOWE]U@ KOMANDU: YOU KILL AT ONCE.

sU]ESTWUET MNOGO KLASSIFIKACIJ KRIPTOSISTEM, NEKOTORYE IZ KOTORYH BUDUT UPOMQNUTY. pRINCIPY KLASSIFIKACII OTNOSQTSQ NE K KA^ESTWU KRIPTOSISTEM (HORO[AQ ILI PLOHAQ), A GOWORQT O PRISU]IH SWOJSTWAH PRI IH PROEKTIROWANII.

o^ENX STARAQ KLASSIFIKACIQ | SISTEMY PODSTANOWOK I PERESTANOWOK, ^ASTO NAZYWAEMYH TAKVE PEREME]ENIQMI. k PRIMERU, [Ga] GOWORIT O ZAME]A@]IH I PERESTANOWO^NYH [IFRAH .

w PERWYH IZ NIH BUKWY ISHODNOGO SOOB]ENIQ ZAMENQ@TSQ NA PODSTANOWKI. zAMENY RASPOLOVENY W KRIPTOTEKSTE W TOM VE PORQDKE, ^TO I W ORIGINALE. eSLI ISPOLXZOWANIE ZAMEN SOHpANQETSQ POSTOQNNYM NA PROTQVENII WSEGO TEKSTA, TO KRIPTOSISTEMA NAZYWAETSQ ODNOALFAWITNOJ. |TOT TERMIN WYRAVAET IDE@, ^TO ZDESX IMEETSQ TOLXKO ODNA POSLEDOWATELXNOSTX ZAME]A@]IH BUKW: WSQKAQ BUKWA ISHODNOGO SOOB]ENIQ ODINAKOWO ZAMENQETSQ NA PROTQVENII WSEGO TEKSTA. eSLI ISHODNOE SOOB]ENIE NAPISANO NA L@BOM ESTESTWENNOM QZYKE, KRIPTOANALIZ WSEGDA MOVET OSNOWYWATXSQ NA STATISTI^ESKOM RASPREDELENII BUKW. pRIMERY BUDUT RASSMOTRENY NIVE.

oDNOALFAWITNYE SISTEMY ZAMEN KONTRASTIRU@T S MNOGOALFAWITNYMI KRIPTOSISTEMAMI, GDE ISPOLXZOWANIE PODSTANOWOK MENQETSQ W RAZLI^NYH ^ASTQH TEKSTA. mY WERNEMSQ K MNOGOALFAWITNYM KRIPTOSISTEMAM W PARAGRAFE 1.3. nAIBOLEE RASPROSTRANENNYE KRIPTOANALITI^E- SKIE METODY SWQZANY S MNOGOALFAWITNYMI SISTEMAMI.

w KRIPTOSISTEMAH S PERESTANOWKAMI (ILI TRANSPOZICIQMI) BUKWY ISHODNOGO SOOB]ENIQ PEREUPORQDO^IWA@TSQ. pORQDOK PERESTANOWKI PRI \TOM MOVET KOMBINIROWATXSQ I S NEKOTOROJ DRUGOJ IDEEJ.

rASSMOTRIM PRIMER SISTEMY S PERESTANOWKOJ. iSHODNOE SOOB]ENIE PODELENO NA BLOKI PO TRI BUKWY W KAVDOM. pERESTANOWKA BUKW W KAVDOM BLOKE OSU]ESTWLQETSQ TAKIM OBRAZOM, ^TO PERWAQ BUKWA STANOWITSQ TRETXEJ, A WTORAQ I TRETXQ BUKWY SDWIGA@TSQ NA ODIN [AG NAZAD. k PRIMERU, ISHODNOE SOOB]ENIE LETUSGOTOFRANCE STANET ETLSGUTOORAFCEN (NAPOMNIM,^TO PROBELY MEVDU OTDELXNYMI SLOWAMI ^A- STO IGNORIRU@TSQ).

24

gLAWA 1. kLASSIˆESKAQ KRIPTOGRAFIQ

w \TOM PARAGRAFE OBSUVDA@TSQ ODNOALFAWITNYE SISTEMY. w KA^E- STWE PROSTRANSTWA ISHODNYH SOOB]ENIJ WYBRANO MNOVESTWO SLOW, SOSTAWLENNYH IZ BUKW ANGLIJSKOGO ALFAWITA. pO\TOMU, KAVDAQ BUKWA A,

B, C,: : : , Z ZAMENQETSQ NA x1; x2; x3; : : : ; x26 WEZDE W ISHODNOM SOOB]E- NII. pODSTANOWKI DLQ NIH RAZLI^NY, NO ONI MOGUT SODERVATX BUKWY,

NE WHODQ]IE W ANGLIJSKIJ ALFAWIT. kRAJNIM QWLQETSQ SLU^AJ, KOGDA KRIPTOTEKST SODERVIT NEKOTORYE SOWER[ENNO OTLI^NYE OT BUKW SIMWOLY. w KA^ESTWE PRIMERA RASSMOTRIM SLEDU@]EE SOOTWETSTWIE DLQ BUKW ANGLIJSKOGO ALFAWITA:

A:

B:

C:

 

 

S

T

U

D:

E:

F:

 

 

V

W

X

G:

H:

I:

 

 

Y

Z

 

lINII, OKAJMLQ@]IE KAVDU@ BUKWU WMESTE S TO^KAMI (DWE, ODNA ILI NI ODNOJ), UKAZYWA@T ZAMENU DLQ BUKWY. tAK, ISHODNOE SOOB]ENIE WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER BUDET ZA[I-

FROWANO KAK

 

 

 

 

 

 

:

 

 

 

¢

 

 

¢

 

 

:

 

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

 

 

¢

 

 

 

 

 

:

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

 

:

 

 

 

 

:

 

 

 

¢

 

¢

 

:

 

 

 

 

:

 

 

 

 

 

 

 

 

 

¢

 

¢

 

¢

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¢

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

¢

 

 

:

 

 

 

 

 

 

 

 

 

:

 

¢

 

 

 

 

 

nA PERWYJ WZGLQD KAVETSQ, ^TO MY MOVEM SKAZATX DOWOLXNO MALO OB ODNOALFAWITNYH SISTEMAH. eSLI ISHODNOE SOOB]ENIE NAPISANO NA ANGLIJSKOM ILI DRUGOM ESTESTWENNOM QZYKE, TO STATISTI^ESKIJ ANALIZ WSKROET \TU SISTEMU. eSLI OBRAZEC TEKSTA DOSTATO^NO DLINEN, TO NAIBOLEE ^ASTO WSTRE^A@]IJSQ W KRIPTOTEKSTE SIMWOL PREDSTAWLQET SOBOJ NAIBOLEE UPOTREBITELXNU@ BUKWU ESTESTWENNOGO QZYKA. dOSTATO^NO OBY^NO OTYSKATX TAKIM METODOM NESKOLXKO BUKW, A OB OSTALXNYH ZATEM MOVNO DOGADATXSQ. s DRUGOJ STORONY, ESLI PROSTRANSTWO ISHODNYH SOOB]ENIJ ESTX §¤, GDE § | ANGLIJSKIJ ALFAWIT, I NET NIKAKOJ DOPOLNITELXNOJ INFORMACII, TO KRIPTOANALIZ ODNOALFAWITNOJ SISTEMY NEWOZMOVEN. nELXZQ NAJTI SOOTWETSTWIE MEVDU BUKWAMI ISHODNOGO SOOB]ENIQ I IH ZAMENAMI: WSE SOOTWETSTWIQ RAWNOWEROQTNY. nA SAMOM DELE, W \TOM SLU^AE ODNOALFAWITNAQ [IFROWKA QWLQETSQ PROSTO KODOM; PRAWILXNAQ [IFROWKA IMELA BY MESTO W TOM SLU^AE, ESLI ZNA^IMYE SOOB]ENIQ BYLI BY PEREWEDENY (S ODINAKOWYM RASPREDELENIEM) W SLOWA IZ §¤.

pRI TAKOM PERWONA^ALXNOM RASSMOTRENII ODNOALFAWITNYH SISTEM UPUSKAETSQ NESKOLXKO WAVNYH MOMENTOW. w DEJSTWITELXNOSTI OB ODNOALFAWITNYH SISTEMAH MOVET BYTX SKAZANO MNOGO. oSNOWNOJ WOPROS

1.2. oDNOALFAWITNYE SISTEMY

25

ZAKL@^AETSQ W UPRAWLENII KL@^OM: WSE RASKRYWAETSQ, ESLI STANET IZWESTNO SOOTWETSTWIE MEVDU ISHODNYMI BUKWAMI I IH ZAMENOJ (T.E. IZWESTEN KL@^). sLEDOWATELXNO, KL@^ NE DOLVEN BYTX DOSTUPEN NI W KAKOJ FORME: NI W PISXMENNOM WIDE, NI W PAMQTI KOMPX@TERA. oTPRAWITELX I POLU^ATELX HRANQT KL@^ W PAMQTI. rAZLI^NYE SPOSOBY HRANENIQ PRIWODQT K RAZNYM ODNOALFAWITNYM SISTEMAM. rASSMOTRIM NEKOTORYE IZ NIH.

mY UVE GOWORILI O SISTEME cEZARQ W PARAGRAFE 1.1. zAMENA BUKWY OSU]ESTWLQETSQ SDWIGOM NA k [AGOW W ALFAWITE. w SISTEME cEZARQ I DRUGIH PODOBNYH SISTEMAH BUDET ISPOLXZOWATXSQ ^ISLOWOE KODIROWANIE BUKW:

A B C D E F G H I J

K

L M

0

1

2

3

4

5

6

7

8

9

10 11

12

N O P Q R S T U V W X

Y Z

13

14

15

16

17

18

19

20

21

22

23 24

25

tAK, SOGLASNO SISTEME cEZARQ, KAVDAQ BUKWA ® STANOWITSQ ® + k. wSQ ARIFMETIKA ZDESX WEDETSQ PO MODUL@ 26. nI KODIROWANIE, NI DEKODIROWANIE (IZ ^ISEL W BUKWY) NE OTNOSITSQ K SAMOMU PROCESSU ZA[IFROWANIQ.

~ISLO WSEH WOZMOVNYH KL@^EJ W SISTEME cEZARQ O^ENX MALO. dRUGIM KRUPNYM NEDOSTATKOM S TO^KI ZRENIQ BEZOPASNOSTI QWLQETSQ SOHRANENIE ALFAWITNOGO PORQDKA I W POSLEDOWATELXNOSTI PODSTAWLQEMYH BUKW; IZMENQ@TSQ TOLXKO NA^ALXNYE POZICII. w RASSMOTRENNYH NIVE AFFINNYH KRIPTOSISTEMAH \TOT NEDO^ET USTRANEN.

oTSTUPLENIE: sTARYE WREMENA. `LIJ cEZARX POWESTWUET O POSYLKE ZA[IFROWANNOGO SOOB]ENIQ cICERONU. iSPOLXZUEMAQ PRI \TOM SISTEMA PODSTANOWOK BYLA ODNOALFAWITNOJ, NO NE QWLQLASX SISTEMOJ cEZARQ: LATINSKIE BUKWY ZAMENQLISX NA GRE^ESKIE SPOSOBOM, KOTORYJ NE BYL QSEN IZ RASSKAZA cEZARQ. iNFORMACIQ O TOM, ^TO cEZARX DEJSTWITELXNO ISPOLXZOWAL KRIPTOSISTEMU cEZARQ, PRI[LA OT sWETONIQ. w DEJSTWITELXNOSTI, SOGLASNO sWETONI@, SDWIG W ALFAWITE OSU]ESTWLQLSQ NA TRI BUKWY. iNFORMACIQ O TOM, ^TO cEZARX ISPOLXZOWAL I DRUGIE SDWIGI, DOKUMENTALXNO NE PODTWERVDENA.

sISTEMA cEZARQ NE QWLQETSQ STAREJ[EJ. wOZMOVNO, ^TO NAIBOLEE DREWNEJ IZ IZWESTNYH QWLQETSQ SISTEMA GRE^ESKOGO ISTORIKA pOLIBIQ, UMER[EGO ZA TRIDCATX LET DO ROVDENIQ cEZARQ. nE IZWESTNO, ISPOLXZOWAL LI pOLIBIJ SWO@ SISTEMU DLQ KRIPTOGRAFI^ESKIH CELEJ. oPI[EM \TU SISTEMU DLQ ANGLIJSKOGO ALFAWITA, W KOTOROM OPU]ENA BUKWA J.

26

gLAWA 1. kLASSIˆESKAQ KRIPTOGRAFIQ

rASSMOTRIM SLEDU@]IJ KWADRAT, ^ASTO NAZYWAEMYJ W NA[I DNI DOSKOJ pOLIBIQ:

 

A

B

C

D

E

A

A

B

C

D

E

B

F

G

H

I

K

C

L

M

N

O

P

D

Q

R

S

T

U

E

V

W

X

Y

Z

 

 

 

 

 

 

kAVDAQ BUKWA ® MOVET BYTX PREDSTAWLENA PAROJ BUKW, UKAZYWA@]IH NA STROKU I STOLBEC, W KOTORYH RASPOLOVENA DANNAQ BUKWA ®. tAK, PREDSTAWLENIQ DLQ BUKW K, O I T ESTX BE, CD I DD SOOTWETSTWENNO. iSHODNOE SOOB]ENIE LETUSGOTOSAUNA [IFRUETSQ KAK

CAAEDDDEDCBBCDDDCDDCAADECCAA.

w NA[EJ TERMINOLOGII SISTEMA pOLIBIQ | \TO ODNOALFAWITNAQ SISTEMA ZAMEN W ALFAWITE IZ 25 BUKW f AA, AB, : : : , AE, BA,: : : , EE g.

sOWMESTNO S KRIPTOGRAFIEJ ^ASTO ISPOLXZOWALOSX ISKUSSTWO TAJNOPISI (SOKRYTIQ SOOB]ENIJ). k PRIMERU, ZA[IFROWANNOE SOOB]ENIE MOVET BYTX NAPISANO BESCWETNYMI ^ERNILAMI. dREWNEGRE^ESKIJ ISTORIK gERODOT NE UPOMINAET O KRIPTOSISTEMAH W NA[EM SMYSLE \TOGO SLOWA, ZATO U NEGO IME@TSQ RASSKAZY O TAJNOPISI. wOT ODIN IZ NIH.

gISTAJ I EGO ZQTX aRISTAGOR PREDWARITELXNO DOGOWORILISX, ^TO SODERVA]EE NESKOLXKO TO^EK SOOB]ENIE BUDET OZNA^ATX, ^TO aRISTAGOR DOLVEN PODNQTX MQTEV PROTIW pERSII. kOGDA gISTAJ RE[IL DEJSTWITELXNO POSLATX TAKOE SOOB]ENIE aRISTAGORU, ON OBNARUVIL, ^TO BLIZLEVA]AQ TERRITORIQ T]ATELXNO OHRANQETSQ. tOGDA gISTAJ POBRIL GOLOWU SWOEMU NAIBOLEE WERNOMU RABU, NARISOWAL TO^KI NA GOLOWE I PODOVDAL, POKA WOLOSY OTRASTUT WNOWX. kOGDA \TO SWER[ILOSX, ON POSLAL RABA SO SLEDU@]EJ ZAPISKOJ DLQ aRISTAGORA: \pOBREJ MO@ GOLOWU!"

wY[EIZLOVENNAQ ISTORIQ GOWORIT NAM I O TOM, ^TO W TE WREMENA KRIPTOGRAFY NE BYLI TAK OGpANI^ENY WO WpEMENI, KAK SEGODNQ.

2

aFFINNAQ KRIPTOSISTEMA OPREDELQETSQ DWUMQ CELYMI ^ISLAMI a I b, GDE 0 · a; b · 25, a I 26 WZAIMNO PROSTY. zAMENOJ DLQ BUKWY ® BUDET a® + b (mod 26). zDESX MY RABOTAEM S ^ISLOWYMI KODAMI BUKW I WSE ARIFMETI^ESKIE DEJSTWIQ WYPOLNQ@TSQ PO MODUL@ ^ISLA 26. k PRIMERU, ESLI a = 3 I b = 5, TO POLU^AEM SLEDU@]EE SOOTWETSTWIE DLQ ^ISLOWYH KODOW BUKW:

1.2. oDNOALFAWITNYE SISTEMY

27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5 8 11 14 17 20 23 0 3 6 9 12 15 18 21 24 1 4 7 10 13 16 19 22 25 2

kOGDA DEKODIRUEM ^ISLA W BUKWY, POLU^IM SLEDU@]EE SOOTWETSTWIE DLQ BUKW:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z F I L O R U X A D G J M P S V Y B E H K N Q T W Z C

iSHODNOE SOOB]ENIE NOTEVERYSTEAMBATHISSAUNA ZA[IFRUETSQ W SVKRQREZHKRFPIFKADHHFNSF.

uSLOWIE WZAIMNOJ PROSTOTY PARY ^ISEL a I 26 NEOBHODIMO DLQ OBESPE^ENIQ BIEKTIWNOSTI OTOBRAVENIQ f(®) = a®+b. eSLI MY RASSMOTRIM OTOBRAVENIE 10® + 1, GDE DANNOE USLOWIE NE WYPOLNQETSQ, TO BUKWY A I N OBE OTOBRAVA@TSQ W B I, SLEDOWATELXNO, B MOVET BYTX RAS[IFROWANA I KAK A, I KAK N. s DRUGOJ STORONY, NET ^ISLOWOGO KODA OTOBRAVAEMOGO W O, I, SLEDOWATELXNO, O NE TREBUETSQ W ALFAWITE PODSTANOWOK. lEGKO NAJTI WSE PARY BUKW, OTOBRAVAEMYH W ODNU I TU VE BUKWU TAK VE, KAK I WSE BUKWY, NE TREBU@]IESQ W ALFAWITE PODSTANOWOK.

tEPERX WNOWX PEREJDEM W MIR KRIPTOANALITIKA.

pRIMER 1.3. iSHODNOE SOOB]ENIE, SOSTAWLENNOE IZ BUKW ANGLIJSKOGO ALFAWITA, RAZBIWAETSQ NA BLOKI PO PQTX BUKW W KAVDOM, A ZATEM [IFRUETSQ S POMO]X@ AFFINNOJ SISTEMY. pROBELY MEVDU SLOWAMI W ISHODNOM SOOB]ENII PRI \TOM IGNORIRU@TSQ. pUSTX POLU^EN SLEDU@]IJ KRIPTOTEKST:

B H J U H N B U L S V U L R U S L Y X H O N U U N B W N U A X U S N L U Y J S S W X R L K G N B O N U U N B W S W X K X H K X D H U Z D L K X B H J U H B N U O N U M H U G S W H U X M B X R W X K X L U X B H J U H C X K X A X K Z S W K X X L K O L J K C X L C M X O N U U B V U L R R W H S H B H J U H N B X M B X R W X K X N O Z L J B X X H B N F U B H J U H L U S W X G L L K Z L J P H U U L S Y X B J K X S W H S S W X K X N B H B H J U H Y X W N U G S W X G L L K

ppEVDE ^EM PpIMENQTX KAKIE-LIBO SPECIALXNYE KRIPTOANALITI^E- SKIE METODY, SDELAEM NESKOLXKO OB]IH ZAME^ANIJ. wSE NA[I PRIMERY NEDOSTATO^NY S TO^KI ZRENIQ REALXNOJ KRIPTOGRAFII. oBpAZCY TEKSTA

28

gLAWA 1. kLASSIˆESKAQ KRIPTOGRAFIQ

O^ENX KOROTKI, A ISPOLXZUEMYE ^ISLA MALY. pRI^INA \TOGO ZAKL@^A- ETSQ W TOM, ^TO ESLI MY POPYTAEMSQ OPISATX REALXNU@ SITUACI@, TO IZLOVENIE STANET TpUDNYM DLQ WOSPpIQTIQ.

sKOLXKO W AFFINNOJ SISTEME IMEETSQ RAZLI^NYH KL@^EJ? kAVDYJ KL@^ POLNOSTX@ OPREDELEN PAROJ CELYH ^ISEL a I b, ZADA@]IH OTOBRA-

VENIE a® + b. sU]ESTWUET 12 ZNA^ENIJ DLQ a: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25. sU]ESTWUET 26 WOZMOVNYH ZNA^ENIJ DLQ b, PRI^EM ONI MOGUT BYTX ISPOLXZOWANY NEZAWISIMO OT ZNA^ENIJ DLQ a, ZA ISKL@^ENIEM SLU^AQ a = 1; b = 0. |TO DAET W SOWOKUPNOSTI 12¢26¡1 = 311 WOZMOVNYH KL@^EJ.

pEREBRATX I PROWERITX WSE 311 KL@^EJ O^ENX LEGKO S POMO]X@ KOMPX@TERA, I, SLEDOWATELXNO, PROWEDENIE KRIPTOANALIZA NE SOSTAWIT TRUDA. tEM NE MENEE MY HOTIM UPROSTITX \TOT IZNURITELXNYJ POISK, ^TO PRIOBRETAET ISKL@^ITELXNU@ ZNA^IMOSTX W BOLEE ZAPUTANNYH KRIPTOANALITI^ESKIH ZADA^AH.

oSNOWNAQ KRIPTOANALITI^ESKAQ ATAKA PROTIW SISTEMY ZAMEN NA^I- NAETSQ S PODS^ETA ^ASTOT POQWLENIQ SIMWOLOW: OPpEDELQETSQ ^ISLO POQWLENIJ KAVDOJ BUKWY W KRIPTOTEKSTE. rASPREDELENIE BUKW W KRIPTOTEKSTE SRAWNIWAETSQ ZATEM S RASPREDELENIEM BUKW W ALFAWITE ISHODNYH SOOB]ENIJ, K PRIMERU, W ANGLIJSKOM. bUKWA S NAIWYS[EJ ^ASTOTOJ W KRIPTOTEKSTE BUDET ZAMENQTXSQ NA BUKWU S NAIWYS[EJ ^ASTOTOJ W ANGLIJSKOM I T.D. wEROQTNOSTX USPE[NOGO WSKRYTIQ SISTEMY POWY[AETSQ S UWELI^ENIEM DLINY KRIPTOTEKSTA.

iNFORMACIQ O RASPREDELENII BUKW ANGLIJSKOGO ALFAWITA SODERVITSQ W MNOVESTWE RAZLI^NYH TABLIC, ANALOGI^NYE TABLICY IME@TSQ I DLQ DRUGIH ESTESTWENNYH QZYKOW. pOD^ERKNEM TEM NE MENEE, ^TO NI ODNA IZ \TIH TABLIC NE SODERVIT OKON^ATELXNOJ INFORMACII. dAVE PORQDOK BUKW OTNOSITELXNO IH ^ASTOTY POQWLENIQ W TEKSTE OTLI^EN DLQ RAZNYH TABLIC. rASPREDELENIE BUKW O^ENX SILXNO ZAWISIT OT TIPA TEKSTA: OBYKNOWENNAQ PROZA, RAZGOWORNYJ QZYK, TEHNI^ESKIJ, QZYK TELEKOMMUNIKACIJ I T.D. nET TABLICY, KOTORAQ MOVET U^ESTX PREDPOLOVITELXNO WSE TIPY TEKSTOW!

oDNAKO ESTX NEKOTORYE WE]I, OB]IE DLQ WSEH TABLIC, OPISYWA@]IH ANGLIJSKIJ QZYK. bUKWA E WSEGDA WOZGLAWLQET SPISOK ^ASTOT, A T IDET WTOROJ. pO^TI WSEGDA A ILI O NA TRETXEJ POZICII. kROME TOGO, DEWQTX BUKW E, T, A, O, N, I, S, R, H WSEGDA IME@T ^ASTOTU WY[E, ^EM L@BYE DRUGIE BUKWY. |TI DEWQTX BUKW ZAPOLNQ@T 70% ANGLIJSKOGO TEKSTA. ~ITATEL@ PREDOSTAWLQETSQ WOZMOVNOSTX NAPISATX RAZUMNYJ DLINNYJ OTRYWOK TEKSTA NA ANGLIJSKOM, GDE BUKWY S WYSOKOJ ^ASTOTOJ NE SOSTAWLQ@T BOLX[INSTWA!

~TO KASAETSQ POZICIONNOJ ^ASTOTY, BUKWY A, I, H NE ^ASTO STOQT W

1.2. oDNOALFAWITNYE SISTEMY

29

KONCE SLOWA, W TO WREMQ KAK E, N, R POQWLQ@TSQ S GORAZDO MENX[EJ ^A- STOTOJ W NA^ALXNOJ POZICII, ^EM W KONE^NOJ. oSTAW[IESQ BUKWY T, O, S IZ WYSOKO^ASTOTNOGO KLASSA POQWLQ@TSQ S ODINAKOWOJ WEpOQTNOSTX@ I W NA^ALE, I W KONCE. tAKIE NABL@DENIQ, KASA@]IESQ POZICIONNOJ ^A- STOTY, KONE^NO, NE IME@T SILY DLQ pASSMATpIWAEMOGO PRIMERA, TAK KAK DELENIE NA BLOKI ISHODNOGO SOOB]ENIQ UNI^TOVAET NA^ALXNYE I KONE^NYE POZICII.

w SLEDU@]EJ TABLICE BUKWY ANGLIJSKOGO ALFAWITA UPORQDO^ENY PO ^ASTOTE IH POQWLENIQ. tAKVE UKAZANY I PROCENTY DLQ KAVDOJ BUKWY. tABLICA WZQTA IZ [Ga].

wYSOKIJ: spEDNIJ: HIZKIJ:

 

%

 

 

%

 

 

%

E

12.31

 

L

4.03

 

B

1.62

T

9.59

 

D

3.65

 

G

1.61

A

8.05

 

C

3.20

 

V

.93

O

7.94

 

U

3.10

 

K

.52

N

7.19

 

P

2.29

 

Q

.20

I

7.18

 

F

2.28

 

X

.20

S

6.59

 

M

2.25

 

J

.10

R

6.03

 

W

2.03

 

Z

.09

H

5.14

 

Y

1.88

 

 

 

 

70.02

 

 

24.71

 

 

5.27

 

 

 

 

 

 

 

 

w NA[EM PRIMERE ISHODNOE SOOB]ENIE NAPISANO NA ANGLIJSKOM. oDNAKO, RADI SRAWNENIQ, W SLEDU@]EJ TABLICE PREDSTAWLENY NAIBOLEE ^A- STO WSTpE^A@]IESQ BUKWY W DRUGIH QZYKAH.

aNGLIJSKIJ

%

 

nEMECKIJ

%

 

fINSKIJ

%

 

 

 

 

 

 

 

 

E

12.31

 

E

18.46

 

A

12.06

T

9.59

 

N

11.42

 

I

10.59

A

8.05

 

I

8.02

 

T

9.76

O

7.94

 

R

7.14

 

N

8.64

N

7.19

 

S

7.04

 

E

8.11

I

7.18

 

A

5.38

 

S

7.83

S

6.59

 

T

5.22

 

L

5.86

R

6.03

 

U

5.01

 

O

5.54

H

5.14

 

D

4.94

 

K

5.20

 

 

 

 

 

 

 

 

30

 

 

 

gLAWA 1.

kLASSIˆESKAQ KRIPTOGRAFIQ

 

fRANCUZSKIJ

 

 

iTALXQNSKIJ

 

%

 

iSPANSKIJ

 

%

 

%

 

 

 

 

E

15.87

 

E

 

11.79

 

E

 

13.15

 

 

A

9.42

 

A

 

11.74

 

A

 

12.69

 

 

I

8.41

 

I

 

11.28

 

O

 

9.49

 

 

S

7.90

 

O

 

9.83

 

S

 

7.60

 

 

T

7.26

 

N

 

6.88

 

N

 

6.95

 

 

N

7.15

 

L

 

6.51

 

R

 

6.25

 

 

R

6.46

 

R

 

6.37

 

I

 

6.25

 

 

U

6.24

 

T

 

5.62

 

L

 

5.94

 

 

L

5.34

 

S

 

4.98

 

D

 

5.58

 

zAMETIM, ^TO BUKWY I, N, S, E, A POQWLQ@TSQ W WYSOKO^ASTOTNOM KLASSE KAVDOGO QZYKA!

wSE \TI OB]IE ZAME^ANIQ PODHODQT K NA[EMU PERWOMU DLINNOMU KRIPTOANALITI^ESKOMU PRIMERU. wOZWRATIMSQ TEPERX K KRIPTOTEKSTU, S^I- TAQ ^ISLO POQWLENIJ KAVDOJ BUKWY:

 

wYSOKIJ:

 

 

spEDNIJ:

 

 

HIZKIJ:

 

~ISLO

 

 

~ISLO

 

 

 

~ISLO

 

 

 

 

 

 

 

 

 

X

32

 

J

11

 

D

 

2

U

30

 

O

6

 

V

 

2

H

23

 

R

6

 

F

 

1

B

19

 

G

5

 

P

 

1

L

19

 

M

4

 

E

 

0

N

16

 

Y

4

 

I

 

0

K

15

 

Z

4

 

Q

 

0

S

15

 

C

3

 

T

 

0

W

14

 

A

2

 

 

 

 

 

183=78.21%

 

 

45=19.23%

 

 

 

6=2.56%

 

 

 

 

 

 

 

 

 

~ASTOTA BUKW X, U, H, B, L, N, K, S, W DAVE WY[E,^EM ^ASTOTA BUKW E, A, T, O, N, I, S, R, H. pO\TOMU PERWYE BUKWY SOOTWETSTWU@T POSLEDNIM. tAK KAK MY SWQZANY S AFFINNOJ SISTEMOJ, DOSTATO^NO NAJTI

KORREKTNU@ ZAMENU DLQ DWUH BUKW.

sDELAEM POPYTKU DLQ PERWYH DWUH SAMYH WYSOKO^ASTOTNYH BUKW: X | ZAMENA DLQ E, U | DLQ T. aFFINNAQ SISTEMA OTOBRAVAET KAVDYJ ^ISLOWOJ KOD ® W a ¢ ® + b. sLEDOWATELXNO,

4a + b ´ 23 (mod 26) I 19a + b ´ 20 (mod 26) :

|TI SRAWNENIQ PO MODUL@ 26 IME@T EDINSTWENNOE RE[ENIE:

a = 5 I b = 3 :

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.