
- •Статистические методы в психологии Учебно-методический комплекс
- •Содержание
- •Введение
- •Краткое содержание лекционных занятий
- •2. Проблемы измерения в психолого-педагогических исследованиях
- •3. Основные проблемы применения статистических методов в психологических исследованиях
- •Библиография
- •Лекция 2.
- •2. Вероятностный формализм описательной статистики. Случайность и вероятность. Событие. Вероятность событий.
- •Библиография
- •Лекция 3.
- •2. Понятие вероятности
- •3. Алгебра событий
- •4. Основная терминология в алгебре событий
- •Библиография
- •Лекция 4.
- •2. Закон распределения случайных величин
- •3. Биномиальное распределение (распределение Бернулли)
- •4. Распределение Пуассона
- •5. Нормальное (гауссовское) распределение
- •6. Равномерное распределение
- •7. Распределение Стьюдента
- •Библиография
- •Лекция 5.
- •2. Первичный взгляд на данные. Графическая визуализация данных выборки. Диаграмма рассеяния
- •3. Количественное описание выборочных данных
- •4. Выборочное среднее значение
- •Библиография
- •Лекция 6 Статистические таблицы
- •1. Понятие о статистической таблице. Элементы статистической таблицы
- •2. Виды таблиц по характеру подлежащего
- •3. Виды таблиц по разработке сказуемого
- •4. Основные правила построения таблиц
- •5. Чтение и анализ таблицы
- •6. Таблицы сопряженности
- •Библиография
- •Лекция 7 Шкалы измерения
- •1. Понятие измерения
- •2. Измерительные шкалы
- •Библиография
- •Лекция 8. Средние величины. Кривая нормального распределения
- •1. Распределения переменных величин
- •Проверка нормальности распределения
- •Библиография
- •Лекция 9 Понятие о генеральной и выборочной совокупности
- •1. Генеральная совокупность и выборка
- •2. Проблема репрезентативности выборки
- •Библиография
- •Лекция 10. Статистические гипотезы
- •Библиография
- •Лекция 11 Статистические критерии
- •Библиография
- •2. Определение надёжности тестов
- •3. Стандартизация психодиагностических тестов
- •Библиография
- •Лекция 13 Критерии различия в уровне исследуемого признака
- •Библиография
- •Лекция 14. Критерии оценки достоверности сдвига в значениях исследуемого признака
- •Алгоритм подсчета g – критерия знаков
- •Алгоритм вычисления т – критерия Вилкоксона
- •5. Применение непараметрических критериев: классификация сдвигов и критериев оценки их статистической достоверности
- •Библиография
- •Лекция 15. Критерии различия в распределении признака
- •1. C2 критерий Пирсона
- •Библиография
- •Лекция 16. Многофункциональные статистические критерии
- •1. Критерий j* - угловое преобразование Фишера
- •Алгоритм расчета критерия φ*
- •3. Биномиальный критерий m
- •Библиография
- •Лекция 17–18
- •2. Коэффициент корреляции Пирсона
- •3. Корреляция метрических переменных
- •4. Корреляция ранговых переменных
- •5. Корреляция дихотомических переменных
- •Библиография
- •Лекция 19.
- •2. Множественный регрессионный анализ
- •3. Нелинейная регрессия
- •Однофакторный линейный регрессионный анализ (простая регрессия). Метод наименьших квадратов
- •5. Многофакторный линейный регрессионный анализ
- •6. Нелинейный регрессионный анализ
- •7. Проблемы регрессионного анализа
- •Библиография
- •Лекция 20. Кластерный анализ
- •1. Понятие кластерного анализа
- •2. Выбор переменных
- •3. Выбор метода кластерного анализа
- •9. Метод к-средних
- •4. Последовательность кластерного анализа
- •Библиография
- •Лекция 21. Факторный анализ
- •1. Понятие факторного анализа
- •3. Методы факторного анализа
- •4. Вращение матрицы факторных нагрузок
- •Библиография
- •Лекция 22 Дисперсионный анализ
- •1. Понятие дисперсионного анализа.
- •2. Основные идеи дисперсионного анализа
- •3. Ограничения и предположения дисперсионного анализа
- •5. Многофакторый дисперсионный анализ
- •3 Уровня
- •2 Уровня
- •Библиография
- •Тематика практических занятий
- •Тема: Понятие о случайной величине
- •Тема: Понятие о событии. Система событий.
- •Тема: Вероятность
- •Тема: Распределение случайной величины
- •Практическое занятие 6 -7
- •Практическое занятие 8
- •Практическое занятие 9
- •Практическое занятие 10–11 Тема: Стандартизация данных психологических тестов (4 часа)
- •Практическое занятие 12 Тема: Выборка и генеральная совокупность (2 часа)
- •Практическое занятие 13 Тема: Точечное и интервальное оценивание (2 часа)
- •Практическое занятие 14 Тема: Статистические гипотезы и статистические критерии (2 часа)
- •Практическое занятие 15 Тема: Ошибки вывода (2 часа)
- •Практическое занятие 16 Тема: Меры центральной тенденции. Меры изменчивости (2 часа)
- •Практическое занятие 17–18 Тема: Понятие корреляции. Коэффициенты корреляции (4 часа)
- •Практическое занятие 19–20
- •Практическое занятие 21
- •Практическое занятие 22
- •Практическое занятие 23 Тема: Однофакторный дисперсионный анализ (2 часа)
- •Практическое занятие 24–25 Тема: Многофакторный дисперсионный анализ (4 часа)
- •Практическое занятие 26
- •Практическое занятие 27–28
- •Практическое занятие 29–30 Тема: Гистографический анализ (4 часа)
- •Практическое занятие 31
- •Практическое занятие 32–33
- •Практическое занятие 34–35
- •Практическое занятие 36
- •Практическое занятие 37
- •Практическое занятие 38–39
- •Практическое занятие 40
- •Практическое занятие 41–42 Тема: Применение метода моделирования в психологии (2 часа)
- •Тестовые задания
- •Тема 1. Понятие о событии и системе событий
- •Тема 2. Понятие о величине. Распределение случайной величины
- •Тема 3. Статистические таблицы
- •Тема 4. Выборка. Выборочная и генеральная совокупность
- •Тема 5. Меры центральной тенденции
- •Тема 6. Понятие измерения. Измерительные шкалы
- •Тема 7. Статистические критерии и гипотезы
- •Тема 8. Выявление различий в уровне исследуемого признака
- •Тема 9. Понятие корреляции
- •Тема 10. Многомерные методы
- •Тема 11. Факторный анализ
- •Тема 12. Многомерное шкалирование
- •Тема 13. Множественный регрессионный анализ
- •Тема 14. Кластерный анализ
- •Тема 15. Дискриминантный анализ
- •Тема 16. Дисперсионный анализ
- •Тема 17. Стандартизация данных психологических тестов
- •Тема 18. Общие понятия курса
- •Варианты контрольных работ
- •Вопросы к зачёту
- •Вопросы к экзамену
- •Основная литература
- •Дополнительная литература
- •Ключ к тестовым заданиям
- •Глоссарий
3. Методы факторного анализа
Существует достаточно много методов факторного анализа, среди которых:
Факторный анализ образов. Если выбран этот метод, то перед факторизацией диагональные элементы корреляционной матрицы (общности) будут вычисляться как множественные коэффициенты корреляции данной переменной со всеми остальными переменными, а затем возводиться в квадрат. Это самый распространенный метод факторного анализа, обычно выбираемый по умолчанию.
Метод максимального правдоподобия Д. Лоули. В отличие от остальных методов тут предполагается, что число факторов заранее известно (и должно быть установлено в окошке maximum number of factors). Программа затем вычисляет оценки факторных нагрузок и общностей, которые максимизируют вероятность получения исходной корреляционной матрицы.
Центроидный метод Л. Тэрстоуна. В нем корреляции между переменными рассматриваются как пучок векторов, а латентный фактор геометрически представляется как уравновешивающий вектор, проходящий через центр этого пучка. Это наименее современный метод факторного анализа, требующий также наименьшего количества вычислений.
Метод главных осей. В этом методе на каждом итерационном шаге собственные значения вычисляются с помощью общностей, затем общности пересчитываются на основании собственных значений. Новые общности помещаются на диагональ корреляционной матрицы, и начинается новый итерационный шаг. Итерации продолжаются либо пока их число не достигнет максимума (заранее определенного), либо пока минимальные изменения в общностях не станут меньше, чем наперед заданные значения.
Следует помнить, что факторные отображения одной и той же корреляционной матрицы эквивалентны друг другу, если они содержат одинаковое число факторов. Практически это значит, что вы получите одни и те же результаты при любом методе.
Так как результаты, полученные с помощью метода главных компонент, и результаты, полученные с помощью различных процедур собственно факторного анализа, практически никогда существенно не отличаются друг от друга, то обычно применение любого из этих методов называют применением факторного анализа. Поэтому далее будем называть все перечисленные методы факторным анализом.
Напомним, что факторный анализ является методом сокращения или редукции данных, то есть методом сокращения числа переменных. Возникает естественный вопрос: сколько факторов следует выделять? Конечно, не имеет смысла брать столько же факторов, сколько было переменных в исследовании. Отметим, что в процессе последовательного выделения факторов они включают в себя все меньше и меньше изменчивости (то есть объясняют все меньше и меньше дисперсии). Решение о том, когда следует остановить процедуру выделения факторов, главным образом зависит от точки зрения на то, что считать малой «случайной» изменчивостью. Это решение достаточно произвольно, однако имеются некоторые рекомендации, позволяющие рационально выбрать число факторов.
Для применения процедуры выбора следует посчитать некоторую статистику - собственные значения корреляционной матрицы и процент объясненной дисперсии для каждого фактора. Собственное значение - это характеристика матрицы корреляций, которая используется для декомпозиции матрицы и одновременно как критерий определения числа выделенных факторов, и как мера дисперсии, соответствующей данному фактору. Если разделить собственное значение на число переменных р, то получится доля дисперсии, соответствующая данному фактору. Процедура подсчета собственных значений достаточно трудоемка, поэтому рекомендуется пользоваться статистическим пакетом.
Выбор количества факторов можно сделать на основании следующих критериев:
Процент объясненной дисперсии. Если кумулятивный (накопленный) процент общей дисперсии достигает 60% или больше, то можно остановиться на данном количестве факторов. Достаточно взять даже один фактор.
Критерий Кайзера (Н. Keiser). Вы можете отобрать только факторы с собственными значениями, большими 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий предложен Кайзером и является, вероятно, наиболее широко используемым. В приведенном выше примере на основе этого критерия вам следует сохранить только 2 фактора (две главные компоненты).
Критерий каменистой осыпи. Критерий каменистой осыпи является графическим методом. Вы можете изобразить собственные значения, представленные в таблице ранее, в виде простого графика.
Следует найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» - «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона. В соответствии с этим критерием можно оставить в этом примере 2 или 3 фактора.
Критерий Кайзера иногда сохраняет слишком много факторов, в то время как критерий каменистой осыпи иногда сохраняет слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных.
На практике возникает важный дополнительный вопрос, а именно: когда полученное решение может быть содержательно интерпретировано. В нашем примере все очень легко. Факторная матрица показывает, какие переменные образуют каждый фактор. Это связано, прежде всего, с абсолютным значением факторной нагрузки. Иногда в качестве минимальной факторной нагрузки берут значение 0,4 или даже 0,3 (допускается умеренная связь между переменной и фактором).
К сожалению, в реальных исследованиях распределение переменных по факторам не всегда бывает ясным и простым. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее «осмысленное».