
- •Статистические методы в психологии Учебно-методический комплекс
- •Содержание
- •Введение
- •Краткое содержание лекционных занятий
- •2. Проблемы измерения в психолого-педагогических исследованиях
- •3. Основные проблемы применения статистических методов в психологических исследованиях
- •Библиография
- •Лекция 2.
- •2. Вероятностный формализм описательной статистики. Случайность и вероятность. Событие. Вероятность событий.
- •Библиография
- •Лекция 3.
- •2. Понятие вероятности
- •3. Алгебра событий
- •4. Основная терминология в алгебре событий
- •Библиография
- •Лекция 4.
- •2. Закон распределения случайных величин
- •3. Биномиальное распределение (распределение Бернулли)
- •4. Распределение Пуассона
- •5. Нормальное (гауссовское) распределение
- •6. Равномерное распределение
- •7. Распределение Стьюдента
- •Библиография
- •Лекция 5.
- •2. Первичный взгляд на данные. Графическая визуализация данных выборки. Диаграмма рассеяния
- •3. Количественное описание выборочных данных
- •4. Выборочное среднее значение
- •Библиография
- •Лекция 6 Статистические таблицы
- •1. Понятие о статистической таблице. Элементы статистической таблицы
- •2. Виды таблиц по характеру подлежащего
- •3. Виды таблиц по разработке сказуемого
- •4. Основные правила построения таблиц
- •5. Чтение и анализ таблицы
- •6. Таблицы сопряженности
- •Библиография
- •Лекция 7 Шкалы измерения
- •1. Понятие измерения
- •2. Измерительные шкалы
- •Библиография
- •Лекция 8. Средние величины. Кривая нормального распределения
- •1. Распределения переменных величин
- •Проверка нормальности распределения
- •Библиография
- •Лекция 9 Понятие о генеральной и выборочной совокупности
- •1. Генеральная совокупность и выборка
- •2. Проблема репрезентативности выборки
- •Библиография
- •Лекция 10. Статистические гипотезы
- •Библиография
- •Лекция 11 Статистические критерии
- •Библиография
- •2. Определение надёжности тестов
- •3. Стандартизация психодиагностических тестов
- •Библиография
- •Лекция 13 Критерии различия в уровне исследуемого признака
- •Библиография
- •Лекция 14. Критерии оценки достоверности сдвига в значениях исследуемого признака
- •Алгоритм подсчета g – критерия знаков
- •Алгоритм вычисления т – критерия Вилкоксона
- •5. Применение непараметрических критериев: классификация сдвигов и критериев оценки их статистической достоверности
- •Библиография
- •Лекция 15. Критерии различия в распределении признака
- •1. C2 критерий Пирсона
- •Библиография
- •Лекция 16. Многофункциональные статистические критерии
- •1. Критерий j* - угловое преобразование Фишера
- •Алгоритм расчета критерия φ*
- •3. Биномиальный критерий m
- •Библиография
- •Лекция 17–18
- •2. Коэффициент корреляции Пирсона
- •3. Корреляция метрических переменных
- •4. Корреляция ранговых переменных
- •5. Корреляция дихотомических переменных
- •Библиография
- •Лекция 19.
- •2. Множественный регрессионный анализ
- •3. Нелинейная регрессия
- •Однофакторный линейный регрессионный анализ (простая регрессия). Метод наименьших квадратов
- •5. Многофакторный линейный регрессионный анализ
- •6. Нелинейный регрессионный анализ
- •7. Проблемы регрессионного анализа
- •Библиография
- •Лекция 20. Кластерный анализ
- •1. Понятие кластерного анализа
- •2. Выбор переменных
- •3. Выбор метода кластерного анализа
- •9. Метод к-средних
- •4. Последовательность кластерного анализа
- •Библиография
- •Лекция 21. Факторный анализ
- •1. Понятие факторного анализа
- •3. Методы факторного анализа
- •4. Вращение матрицы факторных нагрузок
- •Библиография
- •Лекция 22 Дисперсионный анализ
- •1. Понятие дисперсионного анализа.
- •2. Основные идеи дисперсионного анализа
- •3. Ограничения и предположения дисперсионного анализа
- •5. Многофакторый дисперсионный анализ
- •3 Уровня
- •2 Уровня
- •Библиография
- •Тематика практических занятий
- •Тема: Понятие о случайной величине
- •Тема: Понятие о событии. Система событий.
- •Тема: Вероятность
- •Тема: Распределение случайной величины
- •Практическое занятие 6 -7
- •Практическое занятие 8
- •Практическое занятие 9
- •Практическое занятие 10–11 Тема: Стандартизация данных психологических тестов (4 часа)
- •Практическое занятие 12 Тема: Выборка и генеральная совокупность (2 часа)
- •Практическое занятие 13 Тема: Точечное и интервальное оценивание (2 часа)
- •Практическое занятие 14 Тема: Статистические гипотезы и статистические критерии (2 часа)
- •Практическое занятие 15 Тема: Ошибки вывода (2 часа)
- •Практическое занятие 16 Тема: Меры центральной тенденции. Меры изменчивости (2 часа)
- •Практическое занятие 17–18 Тема: Понятие корреляции. Коэффициенты корреляции (4 часа)
- •Практическое занятие 19–20
- •Практическое занятие 21
- •Практическое занятие 22
- •Практическое занятие 23 Тема: Однофакторный дисперсионный анализ (2 часа)
- •Практическое занятие 24–25 Тема: Многофакторный дисперсионный анализ (4 часа)
- •Практическое занятие 26
- •Практическое занятие 27–28
- •Практическое занятие 29–30 Тема: Гистографический анализ (4 часа)
- •Практическое занятие 31
- •Практическое занятие 32–33
- •Практическое занятие 34–35
- •Практическое занятие 36
- •Практическое занятие 37
- •Практическое занятие 38–39
- •Практическое занятие 40
- •Практическое занятие 41–42 Тема: Применение метода моделирования в психологии (2 часа)
- •Тестовые задания
- •Тема 1. Понятие о событии и системе событий
- •Тема 2. Понятие о величине. Распределение случайной величины
- •Тема 3. Статистические таблицы
- •Тема 4. Выборка. Выборочная и генеральная совокупность
- •Тема 5. Меры центральной тенденции
- •Тема 6. Понятие измерения. Измерительные шкалы
- •Тема 7. Статистические критерии и гипотезы
- •Тема 8. Выявление различий в уровне исследуемого признака
- •Тема 9. Понятие корреляции
- •Тема 10. Многомерные методы
- •Тема 11. Факторный анализ
- •Тема 12. Многомерное шкалирование
- •Тема 13. Множественный регрессионный анализ
- •Тема 14. Кластерный анализ
- •Тема 15. Дискриминантный анализ
- •Тема 16. Дисперсионный анализ
- •Тема 17. Стандартизация данных психологических тестов
- •Тема 18. Общие понятия курса
- •Варианты контрольных работ
- •Вопросы к зачёту
- •Вопросы к экзамену
- •Основная литература
- •Дополнительная литература
- •Ключ к тестовым заданиям
- •Глоссарий
1. Критерий j* - угловое преобразование Фишера
Критерий предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта.
Критерий оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект. Суть углового преобразования Фишера состоит в переводе процентных долей в величины центрального угла, выраженные в радианах. Большей процентной доле будет соответствовать большее значение угла φ, и наоборот. Поскольку в уравнение включена тригонометрическая функция, зависимость между φ и процентной долей будет нелинейной. Она выражается уравнением:
φ = 2 arcsin (√ P) (арксинус корень из P)
Гипотезы.
Доля случаев, в которых проявляется исследуемый эффект, в выборке 1 не больше (Но) \ больше (Н1), чем в выборке 2.
Ограничения критерия
1. Ни одна из сопоставляемых долей не должна быть равной нулю.
2. Число элементов выборки не ограничено сверху. Нижний предел – 2 наблюдения в одной из выборок, при условии соблюдения соотношений:
-
Первая выборка
Вторая выборка
2
Не менее 30
3
Не менее 7
4
Не менее 5
При n1; n2 больше или равно 5 возможны любые сочетания.
Возможности использования критерия
1. Сопоставление выборок по качественно определяемому признаку.
2. Сопоставление выборок по количественно измеряемому признаку.
3. Сопоставление выборок и по уровню, и по распределению признака.
Алгоритм расчета критерия φ*
Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого есть эффект и нет эффекта. (Если признак измерен количественно, следует использовать критерий λ – Колмогорова–Смирнова для поиска оптимальной точки разделения.)
Начертить четырехклеточную таблицу из двух столбцов и двух строк:
Есть эффект 1 выборка |
Нет эффекта 1 выборка |
Есть эффект 2 выборка |
Нет эффекта 2 выборка |
Подсчитать количества значений, соответствующих ячейкам этой таблицы, и занести числа в таблицу. Сумма чисел по строкам должна совпадать с объемом первой и второй выборки - соответственно.
Подсчитать процентные доли значений, имеющих эффект для первой и второй выборки путем деления содержимого ячеек левого столбца на объем соответствующей выборки. Подписать к таблице (например, в скобках) полученные числа, расположив их в соответствующих местах:
Есть эффект 1 выборка (……….%) |
Нет эффекта 1 выборка |
Есть эффект 2 выборка (……….%) |
Нет эффекта 2 выборка |
Проверить, не равняется ли одна из сопоставляемых долей нулю.
Определить из справочных таблиц или по формуле φ = arcsin (√ P) значение угла для каждой из сопоставляемых процентных долей.
Подсчитать эмпирическое значение φ* по формуле:
φ* = (φ1 – φ2) √ n1 n2 / (n1 + n2)
По таблицам сопоставить результат с критическим значением.
Угловое преобразование Фишера позволяет перевести процентные доли, имеющие распределение, отличное от нормального, в величину угла φ. Это распределение уже близко к нормальному, и позволяет использовать параметрические методы статистического анализа.