Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
IS.docx
Скачиваний:
102
Добавлен:
13.04.2015
Размер:
327.68 Кб
Скачать

7. Общие понятия про системы распознавания образов. Принципы и методологии распознавания образов.

Способность «распознавать» считается основным свойством человеческих существ, как, впрочем, и других живых организ­мов.

Образпредставляет собой описание объекта.

В соответствии с характером распознаваемых образов акты распознавания можно разделить на два основных типа: распо­знавание конкретных объектов и распознавание абстрактных объектов. Мы распознаем символы, рисунки, музыку и объекты, нас окружающие. Процесс, включающий распознавание зритель­ных и слуховых образов, можно определить как «сенсорное» распознавание. Процессы этого типа обеспечивают идентифика­цию и классификацию пространственных и временных образов. С другой стороны, мы в состоянии с закрытыми ушами и гла­зами опознать старый довод или найти решение задачи.

Распознавание человеком конкретных образов можно рас­сматривать как психофизиологическую задачу, связанную с про­цессом взаимодействия индивида с определенным физическим раздражителем. Когда индивид воспринимает образ, он реали­зует процесс индуктивного вывода и устанавливает ассоциатив­ную связь между своим восприятием и определенными обобщен­ными понятиями или «ориентирами», установленными им на основании прошлого опыта. В сущности распознавание челове­ком образов можно свести к вопросу оценки относительных шансов на то, что исходные данные соответствуют тому или иному из известных множеств статистических совокупностей, определяющихся прошлым опытом человека и предоставляющих ориентиры и априорнуюинформацию для распознавания. Таким образом, задачу распознавания образов можно рассматривать как задачу установления различий между исходными данными.

В задачах распознавания образов можно основных направления.

1. Изучение способностей к распознаванию, которыми обладают человеческие существа и другие живые организмы;

2. Развитие теории и методов построения устройств, предназначенных для решения отдельных задач распознавания образов в определенных прикладных областях.

Предмет распознавания образовобъединяет ряд научных дисциплин; их связывает поиск решения общей задачи - выделить элементы, принадлежащие конкретному классу, среди множества размытых элементов, относящихся к нескольким классам. Под классом образов понимается некоторая категория, определяющаяся рядом свойств, общих для всех ее элементов.

Простая модель распознавания образов.

Простая схема распознава­ния содержит два основных блока: датчик и классификатор.

Датчик представляет собой устройство, преобразующее физиче­ские характеристики объекта, подлежащего распознаванию, в набор признаков , которые характеризуют дан­ный объект. Классификатор представляет собой устройство, от­носящее каждый поступающий на его вход допустимый набор значений к одному из конечного числа классов (категорий), вычислив множество значений решающих функций.

Считается, что система распознавания допускает ошибку в том случае, если она относит к классу wjобъект, на самом деле принадлежащий отличному отwjклассу. Считается, что система распознаванияR1лучше системы распознаванияR2, если вероятность совершить ошибку для системыR1меньше, чем для системыR2.Датчик выдает информацию в виде вектора,гдеп—число измеренных характеристик каждого физического объекта. Предполагается, что вектор из­меренийхпринадлежит одному изМклассов образовw1, w2, . . . , wm.

Принимаем допущение о том, что априорныевероятности появления объектов каждого класса одинаковы, т. е. векторхможет с равной вероятностью относиться как к одному, так и к другому классу. Пустьр(х | wi)=pi(х)есть плотность рас­пределения для векторахпри условии, что он принадлежит классуwi. В таком случае вероятность того, что на самом деле векторхпринадлежит классуwj, определяется выражением

.

Вероятность того, что вектор хне принадлежит классуwj, опре­деляется выражением

,

задающим вероятность ошибки.

Решающая функция представляет собой функцию d(x),от­носящуюхточно к одному изМзаданных классов. Оптимальной считается решающая функцияd°(x), которая дает наименьшую вероятность ошибки при всех допустимых значениях х, Значениеj, при котором величина1 – рj, будет наименьшей, совпадает с тем значениемj, которому соответствует наибольшее значение вероятностир(х|wj). Итак, оптимальная решающая функция d°(x)относит набор х к классуwiв том и только том случае, если выполняются неравенства

или

.

При р(х|wi)=р(х|wk)ир(х|wi)>р(х|wj), j=1, 2, .... M, jik,оптимальная решающая функцияd°(х)может отне­сти векторхкак к классуwi, так и к классуwk. Для заданного значенияхклассификатор определяет оптимальную решающую функцию.

Допустим, наконец, что измеренные значения распределены нормально и соответствующие ковариационные матрицы имеют вид

,

где cij– ковариацияi-й иj-й компонент вектора измеренийx,а cij – дисперсияi-й компоненты измеренийx. Поскольку в случае нормального распределения имеем

,

где mi– вектор математического ожидания, отношение двух плотностейp(x|wi)иp(x|wj)определяется выражением

Так как ковариационная матрица симметрична, данное отношение условных вероятностей сводится к следующему:

.

Введем величину

;

тогда получим выражения для разделяющей функции

.

Для определения оптимальной разделяющей функции следует вычислить М(М–1) значений функцийrij(х)для всехi, j, ij и выбрать наибольшее из полученных значений. Если окажется что этот максимум равенrkj, то относимхк классуwk. Схема оптимального распознавания, воспроизводящая описанный ме­тод, приведена на рис. 10.6.

Отметим, что уравнениеописывает гиперплоскость, проведенную вn-мерном простран­стве и разделяющую его в случае наличия двух классов на две части:

Следовательно, уравнение rij=0определяет разделяющую по­верхность дляi-го иj-го классов образов.

Рис. 10.6. Пример простой схемы распознавания образов.

Образ– это описание любого элемента как представителя соот­ветствующего класса образов. В случае, когда множество обра­зов разделяется на непересекающиеся классы, желательно использовать для отнесения этих образов к соответствующим классам какое-либо автоматическое устройство. Считывание и обработка погашенных банковских чеков являются примером задачи распознавания образов. Подобные задачи могут вы­полняться и людьми; машина, однако, справляется с ними много быстрее. С другой стороны, некоторые задачи распознавания таковы, что человек едва ли в состоянии решать их. Примером задач такого рода служит выделение из множества морских сигналов и шумов тона подводной лодки посредством анализа подводных звуковых сигналов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]