
- •Оглавление
- •Тема 1. Основные свойства строительных материалов 4
- •Тема 2. Природные каменные материалы 20
- •Тема 3 Керамические материалы и изделия 29
- •Тема 4. Стекло, материалы на его основе. Ситаллы 39
- •Тема 5. Металлы 43
- •Тема 6. Древесина 60
- •Тема 7. Полимерные материалы и изделия 69
- •Тема 8. Органические вяжущие 78
- •Тема 9. Лакокрасочные материалы 90
- •Тема 1. Основные свойства строительных материалов
- •1.1. Общие положения
- •1.2. Классификация основных свойств
- •1.3. Физические свойства
- •1.4. Теплофизические свойства материалов
- •Предел прочности при сжатии Rсж
- •Коэффициент конструктивного качества.
- •1.6. Деформативные свойства.
- •1.7. Физико-химические свойства материалов.
- •1.8. Технологические свойства
- •1.9. Эксплуатационные свойства
- •Тема 2. Природные каменные материалы
- •2.1. Магматические породы
- •2.1.1. Классификация магматических пород
- •Генетическая классификация горных пород
- •2.1.2. Главные породообразующие минералы магматических пород
- •2.1.3. Глубинные породы
- •2.1.4. Излившиеся породы
- •2.2. Осадочные горные породы
- •2.2.1. Классификация осадочных горных пород
- •2.2.2. Главные породообразующие минералы осадочных пород
- •2.2.3. Обломочные породы
- •2.2.4. Хемогенные породы
- •2.2.5. Органогенные породы
- •2.3. Метаморфические породы
- •2.4. Материалы и изделия из природного камня.
- •2.4.1. Характеристика качества природного камня.
- •2.4.2. Получение и обработка природных каменных материалов.
- •Применение горных пород
- •2.5. Меры защиты каменных материалов от выветривания:
- •Тема 3. Керамические материалы и изделия.
- •Классификация керамических материалов.
- •3.1. Сырьевые материалы.
- •3.2. Свойства глин как сырья для керамических изделий.
- •3.3. Общая схема производства керамических изделий.
- •3.4.Свойства керамических изделий.
- •3.5.Стеновые керамические изделия.
- •3.6. Облицовочные материалы и изделия.
- •3.7. Керамические изделия различного назначения.
- •3.8. Санитарно-техническая керамика.
- •3.9. Теплоизаляционные керамические материалы.
- •3.10. Огнеупорные изделия.
- •Тема 4. Стекло. Материалы на его основе. Ситаллы.
- •4.1. Свойства стекла.
- •4.2.Сырье для производства стекла и основные оксиды, содержащиеся в нем.
- •4.3. Общая схема получения стекла
- •4.4. Разновидности стекла и стеклянных изделий, применяемых в строительстве
- •4.5. Материалы и изделия из шлаковых расплавов
- •4.6. Ситаллы и шлакоситаллы
- •4.7. Материалы и изделия из каменного литья.
- •5.1. Классификация металлов.
- •5.2. Строение металлов.
- •5.3. Свойства металлов.
- •5.4. Чугуны.
- •5.6. Влияние нормальных примесей на механические свойства стали
- •5.7. Классификация сталей
- •5.8. Состав и свойства железоуглеродистых сплавов
- •5.9. Упрочение стали
- •5.10. Применение углеродистых сталей
- •5.11. Легированные стали
- •Классификация легированных сталей.
- •Маркировка легированных сталей.
- •Применение легированных сталей.
- •5.12. Цветные металлы и сплавы
- •5.13. Коррозия металлов
- •Способы защиты металла от коррозии.
- •5.14. Производство металлических изделий
- •5.15. Сварка металлов
- •Газовая сварка.
- •Электрическая сварка.
- •5.16. Газовая резка металлов
- •Контрольные вопросы.
- •6.1. Строение древесины
- •6.2. Свойства древесины
- •6.3. Защита древесины от гниения, поражения насекомыми и возгорания.
- •6.4 Основные древесные породы
- •6.5. Лесоматериалы и изделия из древесины
- •Контрольные вопросы.
- •7.1. Пластмассы. Составляющие пластмасс.
- •7.2. Общая характеристика полимеров.
- •Классификация полимеров.
- •7.3. Способы изготовления полимерных изделий.
- •7.4. Основные свойства пластмасс.
- •7.4.1. Физические свойства.
- •7.4.2. Механические свойства.
- •7.4.3. Химические и физико-химические свойства.
- •7.5. Виды строительных материалов и изделий из пластмасс.
- •Классификация полимерных материалов и изделий.
- •Конструкционно-отделочные материалы.
- •Отделочные материалы.
- •Материалы для пола.
- •Теплоизоляционные материалы.
- •Гидроизоляционные материалы и герметики.
- •Трубы и сантехнические изделия.
- •Применение полимеров в технологии бетонов.
- •Клеи на основе полимеров.
- •Контрольные вопросы.
- •8.1 Битумы.
- •8.2. Нефтяные битумы. Классификация.
- •Химический и групповой состав битумов.
- •Свойства вязких и твердых битумов.
- •Маркировка строительных и гидроизоляционных битумов.
- •8.3. Дегти.
- •8.4. Смешанные вяжущие на основе битумов и дегтей.
- •8.5. Асфальтовые и дегтевые бетоны и растворы.
- •Материалы для асфальтового бетона.
- •Производство асфальтового бетона.
- •Основные свойства асфальтовых бетонов.
- •Дегтебетон.
- •8.6. Герметизирующие материалы.
- •Герметики на основе битума.
- •8.7. Гидроизоляционные и кровельные материалы.
- •Рулонные материалы.
- •1. Рулонные битумные материалы.
- •2. Рулонные битумнорезиновые материалы.
- •3. Рулонные полимернобитумные материалы.
- •4. Рулонные дегтевые материалы.
- •5. Дегтебитумные рулонные материалы.
- •6. Дегтебитумнополимерные рулонные материалы.
- •Мастичные материалы.
- •Лакокрасочные материалы.
- •Контрольные вопросы.
- •Тема 9. Лакокрасочные материалы
- •9.1. Связующие
- •9.2. Пигменты
- •Классификация пигментов
- •Свойства пигментов
- •9.3.Вспомогательные материалы
- •9.4. Красочные составы.
- •Контрольные вопросы
1.4. Теплофизические свойства материалов
Теплопроводность– способность материала пропускать сквозь свою толщу (тепло) тепловой поток от одной поверхности к другой (при наличии разных температур на этих поверхностях). Степень теплопроводности характеризуется коэффициентом теплопроводности λ, Вт/(м0С).
(1.18.)
где
Q
– количество тепла, Дж; F
– площадь сечения, перпендикулярная
направлению теплового потока, м2;
- продолжительность прохождения тепла,
сек;
(t1
– t2)
– разность температур, 0С;
- толщина материала, м.
Отсюда следует, что коэффициент теплопроводности однородного материала равен количеству тепла в Дж, проходящему через стену толщиной в 1 м, площадью 1 м2 за время 1 ч. при разности температур на противоположных поверхностях стены в 1 С. Чем выше теплопроводность, тем меньше материал пригоден для ограждающих конструкций. Например,
гранит λ= 2,92 Вт/(м0С), кирпич пустотелый λ=0,44 Вт/(м0С).
Формула В.П.Некрасова, связывает теплопроводность λ [Вт/(м˚С)] с относительной плотностью каменного материала d:
λ=0,162-
0,16, (1.19.)
с увеличением влажности материала λ возрастает, т.к. вода имеет теплопроводность в 25 раз выше, чем воздух [λвоздуха=0,023 Вт/(м˚С)]; λльда=2,3 Вт/(м˚С); λводы=0,57 Вт/(м˚С).
Теплопроводность некоторых строительных материалов представлена в табл. 1.1.
Таблица 1.1.
Теплопроводность некоторых строительных материалов.
Наименование материалов |
Теплопроводность, λ, [Вт/(м˚С)]. |
Наименование материалов |
Теплопроводность, λ, [Вт/(м˚С)] |
Сталь |
58 |
для сравнения | |
Гранит |
2,9 3,3 |
Воздух |
0,023 |
Бетон тяжелый |
1,28 1,55 |
Вода |
0,59 |
Кирпич керамический обыкновенный |
0,81 0,87 |
Лед |
2,3 |
Бетон легкий |
0,35 0,8 |
|
|
Пенобетон |
0,12 0,15 |
|
|
Фибролит |
0,09 0,17 |
|
|
Минеральная вата |
0,06 0,09 |
|
|
Древесноволокнистые плиты |
0,08 |
|
|
Мипора |
0,04 0,05 |
|
|
Теплоемкость – свойство материала поглощать тепло при нагревании.
Теплоемкость оценивают коэффициентом теплоемкости (удельной теплоемкостью), т.е. количеством тепла, необходимым для нагревания 1 кг материала на 1оС и измеряется в кДж/кг.оС.
Пример, удельная теплоемкость тяжелого бетона 0,8 – 0,92 кДж/кг˚С, сосны 25 кДж/кг˚С, гранита 0,75 – 0,93 кДж/кг˚С.
Чем больше удельная теплоемкость материала, тем выше при всех прочих равных условиях теплоустойчивость здания, т.е. способность ограждающих конструкций сохранять постоянство температурного режима внутри ограждаемого помещения, несмотря на колебания температуры наружного воздуха.
Термическая стойкость – свойство материала выдерживать резкие и многократные изменения температуры, не растрескиваясь и не деформируясь (циклы).
Это свойство зависит от однородности материала и от коэффициента теплового расширения составляющих его веществ. Коэффициент теплового расширения зависит от коэффициента линейного расширения и коэффициента объемного теплового расширения.
Коэффициент линейного расширения характеризует удлинение одного метра материала при нагревании его на 1оС.
Коэффициент объемного расширения характеризует увеличение объема 1 м3 материала при нагревании его на 1оС.
Чем меньше эти коэффициенты и выше однородность материала, тем выше его термическая стойкость, т.е. большее количество циклов резких смен температуры он может выдержать.
Пример, каменные материалы из мономинеральных горных пород (мрамор) более термостойки, чем породы, сложенные из нескольких минералов (гранит, сиенит).
Огнестойкость – свойство материала противостоять действию огня (высоких температур и воды) в условиях пожара без значительной потери несущей способности.
По степени огнестойкости строительные материалы делят на несгораемые, трудносгораемые и сгораемые.
Несгораемые материалы – в условиях высоких температур не воспламеняются, не тлеют и не обугливаются. При этом некоторые материалы почти не деформируются (кирпич, черепица) другие могут сильно деформироваться (сталь) или растрескиваться (гранит). Поэтому стальные конструкции часто требуется защищать другими, более огнестойкими материалами (глиняные обмазки и др.).
Трудносгораемые под воздействием высоких температур с трудом воспламеняются, тлеют и обугливаются, но только в присутствии огня. При удалении огня процессы тления, горения и обугливания прекращаются. К таким материалам относятся фибролит, асфальтовый бетон.
Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и горят и тлеют и после удаления источника огня (древесина, войлок, битумы, смолы).
Огнеупорность – свойство материала выдерживать длительное воздействие высокой температуры, не деформируясь, не трескаясь и не расплавляясь.
Огнеупорность материала характеризуется температурой при которой образец стандартной формы и размеров при нагревании в печи по заданному режиму размягчается и, оседая, коснется своей вершиной подставки, на которой он стоит.
Материалы, выдерживающие температуру более 1580оС, называют огнеупорными (шамотный и динасовый кирпич и материалы, хромомагнезитовые материалы).
Материалы, выдерживающие температуры от 1350 до 1580оС, называют тугоплавкими (кжельский кирпич, фарфор).
Материалы, выдерживающие температуру ниже 1350оС, относятся к легкоплавким (обычный кирпич, керамзит и др).
Радиационная стойкость – свойство материала сохранять свою структуру и физико-механические характеристики после воздействия ионизирующих излучений. Уровни радиации вокруг современных источников ионизирующих излучений настолько велики, что может произойти глубокое изменение структуры материала (например, происходит аморфизация структуры кристаллических минералов, которая сопровождается объемными изменениями и возникновением внутренних напряжений). Для сравнительной оценки защитных свойств материала используют «толщину слоя половинного ослабления», равную толщине слоя защитного материала, необходимой для ослабления интенсивности излучения в 2 раза. Для излучений толщина слоя половинного ослабления Т1/2 в м. Может быть вычислена ориентировочно по формуле:
(1.20.)
Примерная толщина слоя половинного ослабления от – излучения составляет: для бетона – 0,1 м, грунта – 0,14 м, свинца – 0,18 м.
Акустические свойства – это свойства, связанные с взаимодействием материала и звука. В городском строительстве при сооружении жилых зданий, учебных заведений, театров, концертных залов и т.п. возникает необходимость создания надлежащих акустических условий – снижения шумов, слышимости, обеспечения хорошей слышимости, неискаженного звучания (концертные залы, храмы).
Звук (звуковые волны) – это механические колебания, распространяющиеся в твердых, жидких и газообразных средах. Интересны две стороны взаимодействия звука и материала.
Звукопроводность – способность материала проводить звук сквозь свою толщу и звукопоглощение – способность материала поглощать и отражать падающий на него звук.
Звукопроводность зависит от массы материала и его строения. Если масса материала велика, то энергии звуковых волн не хватает, чтобы пройти сквозь него, так как для этого надо привести материал в колебание. Поэтому чем больше масса материала, тем меньше он проводит звук. Плохо проводят звук пористые и волокнистые материалы, так как звуковая энергия поглощается и рассеивается развитой поверхностью материала, переходя при этом в тепловую энергию. Звукопоглощение зависит от характера поверхности и пористости материала. Материалы с гладкой поверхностью отражают значительную часть падающего на них звука (эффект зеркала), поэтому в помещении с гладкими стенами из-за многократного отражения от них звука создается постоянный шум.
1.5. Механические свойства материалов
Прочность– способность материала сопротивляться, не разрушаясь, внутренним напряжениям, возникающим под действием внешних нагрузок и других (например тепловых) факторов.
Прочность
материала оценивается пределом прочности
│R│,
который условно равен максимальному
напряжению │max│,
возникшему в материале под нагрузкой
│N│,
вызвавшей разрушение образца материала
деленной на рабочую площадь │F│,
т.е. R
=
max.=N/F.
(1.21.)
Обычно предел прочности определяют путем разрушения стандартных образцов при сжатии и изгибе /на гидравлическом прессе/, при разрыве/ на разрывной машине/, используя формулы.