
Какую работу нужно написать?
Изоморфизм графов
Легко
подсчитать число графов с фиксированным
множеством вершин V. Эти графы
различаются своими ребрами, и поэтому
их число равно количеству подмножеств
множестваVV,
т.е.,
гдеп= | V |. Однако эти графы на
всегда следует различать. Как в применении
теории графов, так и в самой этой теории
чаще существенно лишь то, что есть
объекты (вершины графа) и связи между
объектами (ребра графа). С этих позиций
графы, которые получаются один из другого
изменением наименований вершин, разумно
не различать. Такие графы называютсяизоморфными.
Пусть
GиН– графы, а–
биекция. Если для любых вершинииvграфаG их образы
и
смежны
вН тогда и только тогда, когдаииvсмежны вG, то эта биекция
называетсяизоморфизмом графа G на
граф Н. Если такой
изоморфизм существует, то мы пишем
и
говорим, что графыGиН изоморфны.
П
Рис. 9
Рис. 8
Очевидно, что отношение изоморфизма графов является эквивалентностью, т.е. оно симметрично, рефлексивно и транзитивно. Следовательно, все графы разбивается на классы так, что графы из одного класса попарно изоморфны, а графы из разных классов не изоморфны. Изоморфные графы естественно отождествлять, т.е. считать совпадающими (их можно изобразить одним рисунком). Они могли бы различаться конкретной природой своих элементов, но именно это игнорируется при введении понятия графа. Класс изоморфных графов принято называть абстрактным графом.
В
Рис. 10.
Число gnпомеченных графов порядкапопределяется сложно. Известнаформула Пойа
,
дающая
асимптотику числа gn. Эта
формула означает, что две функцииg(п)=gn
иf(n)=
асимптотически равны, т.е.
.
Операции над графами
Граф Нназываетсяподграфом(иличастью) графаG, еслиVHVG,ЕHЕG. ПодграфНназываетсяостовным подграфом, еслиVH=VG. Если множество вершин подграфаНестьU, а множество его ребер совпадает с множеством всех ребер графаG, оба конца которых принадлежатU, тоНназываетсяподграфом, порожденным множеством U. На рис.11 изображены графGи три его подграфаН1,Н2иН3 , среди которыхН3 является остовным, аН2– порожденным.
Г
Рис. 11
В
Рис. 12называется граф, для которого
– декартово произведение множеств
вершин исходных графов, аE(G)
определяется следующим образом: вершины
(и1,и2) и (v1,v2) в графеGсмежны тогда
и только тогда, когда илии1=v1, аи2 иv2 смежны вG2, илии2=v2, аи2 иv2
смежны вG1(рис. 12).
Очевидно, что
,
.
С помощью операции
произведения можно определить п-мерный
кубрекуррентно:
.
Покажем, что это
определение совпадает с данным ранее.
Действительно,
.
Вершины графа
можно представить векторами длиныпиз 0 и 1 таким образом, что две вершины
будут смежны тогда и только тогда, когда
соответствующие векторы различаются
в одной координате.
Д
Рис. 13:
,
и две несовпадающие вершины смежны в
тогда и только тогда, когда они не смежны
вG:
(рис.
13).
Граф, изоморфный своему дополнению, называется самодополнительным.