
- •Ангелина Витальевна Яковлева
- •2. Основные математические предпосылки эконометрического моделирования. Закон больших чисел, неравенство и теорема Чебышева
- •3. Теоремы Бернулли и Ляпунова
- •4. Виды эконометрических моделей
- •5. Классификация эконометрических моделей
- •6. Этапы эконометрического моделирования. Проблемы, решаемые при эконометрическом исследовании
- •7. Сбор статистических данных для оценивания параметров эконометрической модели
- •8. Классификация видов эконометрических переменных и типов данных. Проблемы, связанные с данными
- •9. Общая модель парной (однофакторной) регрессии
- •10. Нормальная линейная модель парной (однофакторной) регрессии
- •11. Критерии оценки неизвестных коэффициентов модели регрессии
- •12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
- •13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
- •14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
- •15. Оценка дисперсии случайной ошибки модели регрессии
- •16. Состоятельность и несмещённость мнк-оценок
- •17. Эффективность мнк-оценок мнк
- •18. Характеристика качества модели регрессии
- •19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
- •20. Ошибки первого и второго рода. Понятие о статистических критериях. Критическая область, критические точки
- •21. Правосторонняя критическая область. Левосторонняя и двусторонняя критические области. Мощность критерия
- •22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
- •23. Проверка гипотезы о значимости парного коэффициента корреляции
- •24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов
- •25. Точечный и интервальный прогнозы для модели парной регрессии
- •26. Линейная модель множественной регрессии
- •27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
- •28. Линейная модель множественной регрессии стандартизированного масштаба
- •29. Соизмеримые показатели тесноты связи
- •30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
- •31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
- •32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
- •33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
- •34. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции
- •35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
- •36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
- •37. Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности
- •38. Методы устранения мультиколлинеарности
- •39. Модели регрессии, нелинейные по факторным переменным
- •40. Модели регрессии, нелинейные по оцениваемым коэффициентам
- •41. Модели регрессии с точками разрыва
- •42. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным
- •43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам
- •44. Методы нелинейного оценивания коэффициентов модели регрессии
- •45. Показатели корреляции и детерминации для нелинейных моделей регрессии
- •46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
- •47. Тесты Бокса-Кокса и Зарембеки выбора модели регрессии
- •48. Коэффициенты эластичности
- •49. Производственные функции
- •50. Двухфакторная производственная функция Кобба-Дугласа
- •51. Показатели двухфакторной производственной функции Кобба-Дугласа
- •52. Метод наименьших квадратов для двухфакторной производственной функции Кобба-Дугласа. Эффект от масштаба производства
- •53. Двухфакторная производственная функция Солоу
- •54. Многофакторные производственные функции
- •55. Модели бинарного выбора
- •56. Метод максимума правдоподобия
- •57. Гетероскедастичность остатков модели регрессии
- •58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
- •59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
- •60. Устранение гетероскедастичности остатков модели регрессии
- •61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
- •62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
- •63. Устранение автокорреляции остатков модели регрессии
- •64. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
- •65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
- •66. Доступный обобщённый метод наименьших квадратов. Взвешенный метод наименьших квадратов
- •67. Модели регрессии с переменной структурой. Фиктивные переменные
- •68. Тест Чоу
- •69. Спецификация переменных
- •70. Компоненты временного ряда
- •71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
- •72. Критерий «восходящих и нисходящих» серий. Критерий серий, основанный на медиане выборочной совокупности
- •73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций
- •74. Аналитический вид тренда
- •75. Адекватность трендовой модели
- •76. Сезонные и циклические компоненты временного ряда
- •77. Сезонные фиктивные переменные
- •78. Одномерный анализ Фурье
- •79. Методы фильтрации временного ряда
- •80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
- •81. Стационарный процесс. Стационарный временной ряд. Белый шум
- •82. Линейные модели стационарного временного ряда
- •83. Модель авторегрессии и проинтегрированного скользящего среднего
- •84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
- •85. Критерий Дикки-Фуллера проверки наличия единичных корней
- •86. Цензурированные результативные переменные
- •87. Системы эконометрических уравнений
- •88. Структурная и приведённая формы системы одновременных уравнений. Идентификация модели
- •89. Условия идентификации структурной формы системы одновременных уравнений
- •90. Косвенный метод наименьших квадратов (кмнк)
- •91. Метод инструментальных переменных
- •92. Двухшаговый метод наименьших квадратов (дмнк)
- •93. Спецификация и приведенная форма эконометрических моделей в виде системы одновременных уравнений. Эконометрическая модель Самуэльсона-Хикса делового цикла экономики
- •94. Динамические эконометрические модели
- •95. Модели авторегрессии
- •96. Модели с распределённым лагом
- •97. Метод Алмон
- •98. Нелинейный метод наименьших квадратов. Метод Койка
- •99. Модель адаптивных ожиданий (мао)
- •100. Модель частичной (неполной) корректировки (мчк)
59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
Основным условием проведения теста Голдфелда-Квандта является предположение о нормальном законе распределения случайной ошибки βi модели регрессии.
Рассмотрим применение данного теста на примере линейной модели множественной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью множественной регрессии.
В модели множественной регрессии выбирается независимая переменная xik, от которой наиболее вероятно могут зависеть остатки модели ei.
На следующем этапе значения независимой переменной xik ранжируются
располагаются по возрастанию и делятся на равные 3 части.
Для I и III частей строятся две независимые модели регрессии вида:
Для каждой из построенных моделей регрессий рассчитываются суммы квадратов остатков:
Основная гипотеза H0 предполагает постоянство дисперсий случайных ошибок модели регрессии, т. е. присутствие в модели условия гомоскедастичности:
Альтернативная гипотеза H1 предполагает непостоянство дисперсиий случайных ошибок в различных наблюдениях, т. е. присутствие в модели условия гетероскедастичности:
Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора.
Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.
Критическое значение F-критерия определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы: k1=nI–l и k2=nI–l, где l – число оцениваемых по данной выборке параметров.
Наблюдаемое значение F-критерия находят по формуле:
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл›Fкрит, то основная гипотеза отвергается, и, следовательно, в модели регрессии присутствует гетероскедастичность, зависящая от переменной xik.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл‹Fкрит, то основная гипотеза принимается, и гетероскедастичность в модели множественной регрессии не зависит от переменной xik.
На следующем этапе проверяются другие независимые переменные, если есть предположение об их тесной связи с G2(εi).
Если тест Голдфелда-Квандта проводился для линейной модели парной регрессии, то вывод о принятии основной гипотезы означает гомоскедастичность построенной модели регрессии.
60. Устранение гетероскедастичности остатков модели регрессии
Существует множество методов устранения гетероскедастичности остатков модели регрессии. Рассмотрим некоторые из них.
Наиболее простым методом устранения гетероскедастичности остатков модели регрессии является взвешивание параметров модели регрессии. В этом случае отдельным наблюдениям независимой переменой, характеризующимся максимальным среднеквадратическим отклонением случайной ошибки, придаётся больший вес, а остальным наблюдениям с минимальным среднеквадратическим отклонением случайной ошибки придаётся меньший вес. После данной процедуры свойство эффективности оценок неизвестных коэффициентов модели регрессии сохраняется.
Если для устранения гетероскедастичности был использован метод взвешивания, то в результате мы получим взвешенную модель регрессии с весами
Предположим, что на основе имеющихся данных была построена линейная модель парной регрессии, в которой было доказано наличие гетероскедастичности остатков
Рассмотрим подробнее процесс взвешивания для данной модели регрессии.
Разделим каждый член модели регрессии на среднеквадратическое отклонение случайной ошибки G(βi):
В общем виде процесс взвешивания для линейной модели парной регрессии выглядит следующим образом:
Для более наглядного представления полученной модели регрессии воспользуемся методом замен:
В результате получим преобразованный вид взвешенной модели регрессии:
Преобразованная взвешенная модель регрессии является двухфакторной моделью регрессии.
Дисперсию случайной ошибки взвешенной модели регрессии можно рассчитать по формуле:
Полученный результат доказывает постоянство дисперсий случайных ошибок преобразованной модели регрессии, т. е. о выполнении условия гомоскедастичности.
Главный недостаток метода взвешивания заключается в необходимости априорного знания среднеквадратических отклонений случайных ошибок модели регрессии. По той причине, что в большинстве случаев данная величина является неизвестной, приходится использовать другие методы, в частности методы коррекции гетероскедастичности.
Определение. Суть методов коррекции гетероскедастичности состоит в определении оценки ковариационной матрицы случайных ошибок модели регрессии:
Для определения оценок
используется метод Бреуше-Пайана, который реализуется в несколько этапов:
1) после получения оценок неизвестных коэффициентов модели регрессии рассчитывают остатки ei и показатель суммы квадратов остатков
2) рассчитывают оценку дисперсии остатков модели регрессии по формуле:
3) строят взвешенную модель регрессия, где весами являются оценка дисперсии остатков модели регрессии
4) если при проверке гипотез взвешенная модель регрессии является незначимой, то можно сделать вывод, что оценки матрицы ковариаций Ω являются неточными.
Если вычислены оценки дисперсий остатков модели регрессии, то в этом случае можно использовать доступный обобщённый или взвешенный методы наименьших квадратов для вычисления оценок коэффициентов модели регрессии, которые отличаются только оценкой
Если гетероскедастичность остатков не поддаётся корректировке, то можно рассчитать оценки неизвестных коэффициентов модели регрессии с помощью классического метода наименьших квадратов, но затем подвергнуть корректировке ковариационную матрицу оценок коэффициентов
т. к. условие гетероскедастичности приводит к увеличению данной матрицы.
Ковариационная матрица оценок коэффициентов
может быть скорректирована методом Уайта:
где N – количество наблюдений;
X– матрица независимых переменных;
– квадрат остатков модели регрессии;
– транспонированная i-тая строка матрицы данных Х.
Корректировка ковариационной матрицы оценок коэффициентов
методом Уайта приводит к изменению t-статистики и доверительных интервалов для коэффициентов регрессии.