
- •Министерство образования российской
- •Содержание
- •От авторов
- •Молекулярная физика и термодинамика
- •11.1. Молекулярная физика и термодинамика. Основные положения и понятия. Динамические и статистические закономерности. Статистический и термодинамический методы исследования
- •11.2. Молекулярно-кинетическая теория
- •11.2.1. Модель идеального газа. Основное уравнение кинетической теории газов
- •11.2.2. Вывод основных газовых законов молекулярно кинетической теории
- •11.2.2.1. Закон Бойля-Мариотта
- •11.2.2.2. Закон Гей-Люссака
- •11.2.2.3. Закон Шарля
- •11.2.2.4. Объединенный газовый закон Мариотта - Гей-Люссака
- •11.2.2.5. Основное уравнение состояния идеального газа (уравнение Менделеева-Клапейрона)
- •11.2.2.6. Закон Авогадро
- •11.2.2.7. Закон Дальтона
- •11.3. Молекулярно-кинетический смысл абсолютной температуры
- •11.4. Экспериментальное подтверждение молекулярно-кинетической теории газов (опыт Штерна)
- •12.1. Распределение энергии по степеням свободы
- •12.2. Вероятность и флюктуации. Распределение молекул (частиц) по абсолютным значениям скорости. Распределение Максвелла. Скорости теплового движения частиц. Средняя длина свободного пробега молекул
- •12.3. Распределение Больцмана. Барометрическая формула
- •12.4. Внутренняя энергия и теплоемкости идеального газа. Классическая теория теплоемкостей
- •Формулы кинетической энергии молекул газа в зависимости от числа степеней свободы
- •13.1. Первое начало термодинамики
- •13.1.1. Первое начало термодинамики в применении к изопроцессам в идеальных газах
- •13.1.1.1. Изотермический процесс
- •13.1.1.2. Изобарический процесс
- •13.1.1.3. Изохорический процесс
- •13.1.1.4. Адиабатический процесс
- •13.2. Обратимые, необратимые и круговые процессы (циклы)
- •13.3. Цикл Карно. Максимальный кпд тепловой машины
- •13.4. Энтропия системы и её свойства. Определение изменения энтропии системы, совершающей какой-либо изопроцесс
- •1. Изотермический.
- •2. Изобарический.
- •3. Изохорический.
- •4. Адиабатический.
- •13.5. Второе начало термодинамики. Термодинамические потенциалы
- •13.5.1. Второе начало термодинамики
- •13.5.2. Термодинамические потенциалы
- •13.6. Третье начало термодинамики. Применения термодинамики
- •14.1. Термодинамика неравновесных процессов
- •14.2. Закон сохранения массы в термодинамике неравновесных процессов
- •14.3. Закон сохранения импульса в термодинамике неравновесных процессов
- •14.4. Закон сохранения энергии в термодинамике неравновесных процессов
- •14.5. Уравнение баланса энтропии
- •15.1. Реальные газы. Молекулярные силы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальны изотермы реальных газов
- •Критическая температура и температура кипения некоторых жидкостей
- •15.2. Внутренняя энергия реального газа
- •15.3. Эффект Джоуля - Томсона. Сжижение газов
- •15.4. Фазы и фазовые превращения. Фазовые диаграммы. Условия равновесия фаз
- •15.5. Уравнение Клапейрона-Клаузиуса. Метастабильные состояния. Критическая точка
- •15.6. Тройная точка. Фазовые переходы 1-го и 2-го рода
- •16.1. Понятие о физической кинетике. Вязкость жидкостей и газов. Коэффициент вязкости жидкостей и газов. Динамическая и кинематическая вязкости
- •16.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
- •Кинетические явления (явления переноса). Переносимая величина, уравнение процесса, коэффициент процесса
- •17.1. Строение жидкостей
- •17.2. Свойства жидкостей (вязкость, текучесть, сжимаемость и тепловое расширение)
- •17.3. Поверхностное натяжение. Энергия поверхностного слоя жидкости
- •17.4. Поверхностные явления на границе раздела двух жидкостей или жидкости и твердого тела
- •17.5. Капиллярные явления. Закон Жюрена
- •17.6. Кинематическое описание движения жидкости
- •17.7. Уравнения равновесия и движения жидкости. Стационарное движение идеальной жидкости. Уравнение Бернулли
- •17.8. Гидродинамика вязкой жидкости. Силы внутреннего трения. Коэффициент вязкости. Стационарное течение вязкой жидкости. Уравнение неразрывности. Течение по трубе. Формула Пуазейля
- •17.9. Жидкие кристаллы
- •17.9.1. Строение жидких кристаллов (жк)
- •17.9.2. Физические свойства жидких кристаллов и их применение
- •17.10. Магнитные жидкости
- •17.10.1. Структура магнитных жидкостей (мж)
- •17.10.2. Получение магнитных жидкостей
- •17.10.3. Свойства магнитных жидкостей
- •17.10.4. Применение магнитных жидкостей
- •17.11. Кристаллическое состояние
- •17.11.1. Отличительные черты кристаллического состояния
- •17.11.2 Классификация кристаллов
- •17.11.3 Физические типы кристаллических решеток
- •17.11.4 Тепловое движение в кристаллах. Теплоемкость кристаллов
- •17.11.5. Скорость звука в кристалле. Цепочечная модель
- •Можно записать дифференциальное уравнение
- •Библиографический список Основной
- •Дополнительный
- •Полунин Вячеслав Михайлович
- •Сычев Геннадий Тимофеевич
- •Конспект лекций по молекулярной физике и термодинамике для студентов инженерно-технических специальностей
17.5. Капиллярные явления. Закон Жюрена
Изменение высоты уровня жидкости в узких трубах (капиллярах) или зазорах между двумя стенками получило название капиллярности.
Явления капиллярности связаны с взаимодействием между молекулами жидкости и твердого тела, с явлением смачивания. При капиллярных явлениях происходит искривление поверхности жидкости, что в свою очередь влечет к появлению дополнительного давления, под действием которого уровень жидкости в капиллярах либо поднимается, если жидкость смачивает его поверхность, либо опускается, если жидкость несмачивает поверхность капилляра. Высота подъема (опускания) жидкости в капиллярах зависит от его радиуса (рис.17.7).
Предположим, что жидкость смачивает стенки капилляра, образуется вогнутый мениск, радиус кривизны которого R. Дополнительная сила, обусловленная кривизной поверхности, направлена вверх к центру кривизны. Она создает дополнительное давление, под действием которого жидкость поднимается на высоту h. Подъем жидкости будет продолжаться до тех пор, пока дополнительное давление p не уравновесит гидростатическое давление p, т.е.
,
(17.33)
где
R - радиус кривизны поверхности жидкости;
r - радиус капилляра.
Таким образом, имеем
;
,
откуда
.
(17.34)
Из выражения (17.34) можно сделать выводы:
1. При = 0 - жидкость полностью смачивает стенки капилляра. В этом случае
; (17.35)
2. При >/2 жидкость не смачивает стенки капилляра h<0, т.е. уровень жидкости в капилляре ниже уровня этой жидкости в сосуде.
В узком зазоре между погруженными в жидкость параллельными пластинами также происходит поднятие или опускание жидкости. При этом мениск имеет цилиндрическую форму. Его радиус кривизны связан с расстоянием d между пластинами соотношением
.
(17.36)
В
этом случае дополнительное давление
,
а условие равновесия столба жидкости
имеет вид
.
(17.37)
Высота подъема жидкости
.
(17.38)
Уравнение (17.38) отображает закон Журена. Капиллярные явления приводят к возникновению значительных сил сцепления между смачиваемыми пластинами. Например, в узком зазоре между стеклянными пластинками в 10-6 м, p ~ 1,41105 Па, т.е. пластинки размером 0,1х 0,1 м притягиваются с силой около 1400 Н. Это связано с тем, что, за счет искривления поверхности жидкости, давление между пластинами меньше атмосферного на величину
,
где R = d/2.
Капиллярные явления играют существенную роль в природе и технике. За счет капиллярных явлений происходит подъем воды из почвы по стволам деревьев и растительности, подъем влаги по стенам домов и сооружений. Осуществляются процессы, связанные с кровообращением, впитывание влаги фильтровальной бумагой, подъем керосина вдоль фитиля в керосиновых лампах и т.д.
17.6. Кинематическое описание движения жидкости
Разделы механики, в которых изучаются движения жидкостей и газов называются гидро - и аэромеханикой.
Гидро - и аэромеханика, в свою очередь подразделяется на гидро - и аэростатику, в которой изучается равновесие жидкостей и газов, и гидро - и аэродинамику, в которой изучается движение жидкостей и газов совместно с причинами, порождающими это движение.
Общим свойством жидкостей и газов является изменение их объема, формы под действием сколь угодно малых сил.
При изменении объема и формы жидкости в них возникают конечные силы, которые уравновешивают действие внешних сил. Следовательно, жидкости и газы ведут себя также как и твердые тела. Поэтому жидкость и газ, также как и упругие твердые тела, разбиваются на отдельные малые объемы, в которых отдельные атомы и молекулы движутся одинаково. К этим малым элементам жидкостей и газов применимы общие законы механики системы точек, не связанных жестко между собой. Если рассматривается покоящиеся жидкость или газ, или их движения, при которых взаимное расположение отдельных элементов не изменяется, то, с определенной степенью точности, к объемам таких жидкостей можно применять законы динамики твердого тела. В этом случае можно говорить о: центре тяжести объема, моменте сил, действующем на объем, условие равновесия жидкости или газа и т.д., то есть объем жидкости или газа считается отвердевшим. Такой метод изучения жидкостей и газов получил название принципа отвердевания.
Отдельные части жидкостей и газов действуют друг на друга или на соприкасающиеся с ними тела с силой, зависящей от степени их сжатия. Это воздействие характеризуется величиной называемой давлением. Так как сила, действующая со стороны одного элемента на другой, всегда нормальна к площадке, на которую она действует, то давление
.
(17.39)
Давление скалярная величина и не зависит от ориентации площадки dS. Это можно доказать воспользовавшись принципом отвердевания и условием равновесия твердого тела.
Выделим в каком - либо месте некоторый объем жидкости в виде трехгранной призмы. В этом случае на каждую из граней будут действовать силы:
,
,
.
(17.40)
Сечение призмы будем считать столь малым, чтобы давлением жидкости на торцевые грани So можно пренебречь.
Так
как система должна находится в равновесии,
то должно выполняться условие
,
то есть
.
(17.41)
При этом силы образуют треугольник подобный треугольнику сечения призмы. Тогда, разделив величину силы, действующей на грань, на длину соответствующей грани, будем иметь:
.
(17.42)
Так как l1S1, l2S2, l3S3, то
. (17.43)
Поскольку ориентация призмы в пространстве была выбрана произвольно, то, следовательно, величина давления действительно не зависит от ориентации площадки.
При исследовании давления в различных точках покоящихся жидкостей и газов можно применять условие равновесия твердого тела, однако, в этом случае нельзя пренебрегать силами тяжести, как это делалось при рассмотрении малого объема.
Рассмотрим распределение давления в жидкости, находящейся в поле сил тяготения. Для этого выделим в жидкости горизонтально расположенный цилиндрический объем сечением S.
Так
как сила тяжести направлена вертикально,
то ее составляющие в горизонтальном
направлении равны 0. Следовательно,
вдоль оси цилиндра будут действовать
только две силы
тогда по условию равновесия
,
т. е.
.
(17.44)
Таким образом, во всех точках жидкости, лежащих на одном уровне, давление имеет одинаковую величину.
Если взять такой же, но вертикально расположенный цилиндр, то в этом случае вдоль его оси, кроме сил давления будет действовать и сила тяжести равная
,
(17.45)
где - плотность жидкости;
h - высота цилиндра.
В этом случае условие равновесия будет иметь вид
или
. (17.46)
Следовательно, давление на двух разных уровнях отличаются на величину, равную весу вертикального столба жидкости, заключенного между этими уровнями, с площадью сечения, равного единице.
Следствием разного давления на разных уровнях в жидкостях и газах является наличие выталкивающей силы (силы Архимеда), действующей на тела, которые находятся в них.
Чтобы тело, погруженное полностью в жидкость или газ, находилось в равновесии, выталкивающая (подъемная) сила и сила тяжести должны быть равны. Эти силы должны находиться на одной прямой. Т.е. центр тяжести тела и центр тяжести вытесняемого жидкости объема должны лежать на одной вертикальной прямой, причем центр тяжести тела должен лежать ниже центра тяжести этого объема. Это условие выполняется при проектировании и строительстве подводных и летательных устройств.