Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кон.мол.физика02-16.doc
Скачиваний:
188
Добавлен:
12.04.2015
Размер:
2.32 Mб
Скачать

17.5. Капиллярные явления. Закон Жюрена

Изменение высоты уровня жидкости в узких трубах (капиллярах) или зазорах между двумя стенками получило название капиллярности.

Явления капиллярности связаны с взаимодействием между молекулами жидкости и твердого тела, с явлением смачивания. При капиллярных явлениях происходит искривление поверхности жидкости, что в свою очередь влечет к появлению дополнительного давления, под действием которого уровень жидкости в капиллярах либо поднимается, если жидкость смачивает его поверхность, либо опускается, если жидкость несмачивает поверхность капилляра. Высота подъема (опускания) жидкости в капиллярах зависит от его радиуса (рис.17.7).

Предположим, что жидкость смачивает стенки капилляра, образуется вогнутый мениск, радиус кривизны которого R. Дополнительная сила, обусловленная кривизной поверхности, направлена вверх к центру кривизны. Она создает дополнительное давление, под действием которого жидкость поднимается на высоту h. Подъем жидкости будет продолжаться до тех пор, пока дополнительное давление p не уравновесит гидростатическое давление p, т.е.

, (17.33)

где

R - радиус кривизны поверхности жидкости;

r - радиус капилляра.

Таким образом, имеем

; ,

откуда

. (17.34)

Из выражения (17.34) можно сделать выводы:

1. При  = 0 - жидкость полностью смачивает стенки капилляра. В этом случае

; (17.35)

2. При >/2 жидкость не смачивает стенки капилляра h<0, т.е. уровень жидкости в капилляре ниже уровня этой жидкости в сосуде.

В узком зазоре между погруженными в жидкость параллельными пластинами также происходит поднятие или опускание жидкости. При этом мениск имеет цилиндрическую форму. Его радиус кривизны связан с расстоянием d между пластинами соотношением

. (17.36)

В этом случае дополнительное давление , а условие равновесия столба жидкости имеет вид

. (17.37)

Высота подъема жидкости

. (17.38)

Уравнение (17.38) отображает закон Журена. Капиллярные явления приводят к возникновению значительных сил сцепления между смачиваемыми пластинами. Например, в узком зазоре между стеклянными пластинками в 10-6 м, p ~ 1,41105 Па, т.е. пластинки размером 0,1х 0,1 м притягиваются с силой около 1400 Н. Это связано с тем, что, за счет искривления поверхности жидкости, давление между пластинами меньше атмосферного на величину

,

где R = d/2.

Капиллярные явления играют существенную роль в природе и технике. За счет капиллярных явлений происходит подъем воды из почвы по стволам деревьев и растительности, подъем влаги по стенам домов и сооружений. Осуществляются процессы, связанные с кровообращением, впитывание влаги фильтровальной бумагой, подъем керосина вдоль фитиля в керосиновых лампах и т.д.

17.6. Кинематическое описание движения жидкости

Разделы механики, в которых изучаются движения жидкостей и газов называются гидро - и аэромеханикой.

Гидро - и аэромеханика, в свою очередь подразделяется на гидро - и аэростатику, в которой изучается равновесие жидкостей и газов, и гидро - и аэродинамику, в которой изучается движение жидкостей и газов совместно с причинами, порождающими это движение.

Общим свойством жидкостей и газов является изменение их объема, формы под действием сколь угодно малых сил.

При изменении объема и формы жидкости в них возникают конечные силы, которые уравновешивают действие внешних сил. Следовательно, жидкости и газы ведут себя также как и твердые тела. Поэтому жидкость и газ, также как и упругие твердые тела, разбиваются на отдельные малые объемы, в которых отдельные атомы и молекулы движутся одинаково. К этим малым элементам жидкостей и газов применимы общие законы механики системы точек, не связанных жестко между собой. Если рассматривается покоящиеся жидкость или газ, или их движения, при которых взаимное расположение отдельных элементов не изменяется, то, с определенной степенью точности, к объемам таких жидкостей можно применять законы динамики твердого тела. В этом случае можно говорить о: центре тяжести объема, моменте сил, действующем на объем, условие равновесия жидкости или газа и т.д., то есть объем жидкости или газа считается отвердевшим. Такой метод изучения жидкостей и газов получил название принципа отвердевания.

Отдельные части жидкостей и газов действуют друг на друга или на соприкасающиеся с ними тела с силой, зависящей от степени их сжатия. Это воздействие характеризуется величиной называемой давлением. Так как сила, действующая со стороны одного элемента на другой, всегда нормальна к площадке, на которую она действует, то давление

. (17.39)

Давление скалярная величина и не зависит от ориентации площадки dS. Это можно доказать воспользовавшись принципом отвердевания и условием равновесия твердого тела.

Выделим в каком - либо месте некоторый объем жидкости в виде трехгранной призмы. В этом случае на каждую из граней будут действовать силы:

, , . (17.40)

Сечение призмы будем считать столь малым, чтобы давлением жидкости на торцевые грани So можно пренебречь.

Так как система должна находится в равновесии, то должно выполняться условие , то есть

. (17.41)

При этом силы образуют треугольник подобный треугольнику сечения призмы. Тогда, разделив величину силы, действующей на грань, на длину соответствующей грани, будем иметь:

. (17.42)

Так как l1S1, l2S2, l3S3, то

. (17.43)

Поскольку ориентация призмы в пространстве была выбрана произвольно, то, следовательно, величина давления действительно не зависит от ориентации площадки.

При исследовании давления в различных точках покоящихся жидкостей и газов можно применять условие равновесия твердого тела, однако, в этом случае нельзя пренебрегать силами тяжести, как это делалось при рассмотрении малого объема.

Рассмотрим распределение давления в жидкости, находящейся в поле сил тяготения. Для этого выделим в жидкости горизонтально расположенный цилиндрический объем сечением S.

Так как сила тяжести направлена вертикально, то ее составляющие в горизонтальном направлении равны 0. Следовательно, вдоль оси цилиндра будут действовать только две силы тогда по условию равновесия , т. е.

. (17.44)

Таким образом, во всех точках жидкости, лежащих на одном уровне, давление имеет одинаковую величину.

Если взять такой же, но вертикально расположенный цилиндр, то в этом случае вдоль его оси, кроме сил давления будет действовать и сила тяжести равная

, (17.45)

где  - плотность жидкости;

h - высота цилиндра.

В этом случае условие равновесия будет иметь вид

или . (17.46)

Следовательно, давление на двух разных уровнях отличаются на величину, равную весу вертикального столба жидкости, заключенного между этими уровнями, с площадью сечения, равного единице.

Следствием разного давления на разных уровнях в жидкостях и газах является наличие выталкивающей силы (силы Архимеда), действующей на тела, которые находятся в них.

Чтобы тело, погруженное полностью в жидкость или газ, находилось в равновесии, выталкивающая (подъемная) сила и сила тяжести должны быть равны. Эти силы должны находиться на одной прямой. Т.е. центр тяжести тела и центр тяжести вытесняемого жидкости объема должны лежать на одной вертикальной прямой, причем центр тяжести тела должен лежать ниже центра тяжести этого объема. Это условие выполняется при проектировании и строительстве подводных и летательных устройств.