
- •Министерство образования российской
- •Содержание
- •От авторов
- •Молекулярная физика и термодинамика
- •11.1. Молекулярная физика и термодинамика. Основные положения и понятия. Динамические и статистические закономерности. Статистический и термодинамический методы исследования
- •11.2. Молекулярно-кинетическая теория
- •11.2.1. Модель идеального газа. Основное уравнение кинетической теории газов
- •11.2.2. Вывод основных газовых законов молекулярно кинетической теории
- •11.2.2.1. Закон Бойля-Мариотта
- •11.2.2.2. Закон Гей-Люссака
- •11.2.2.3. Закон Шарля
- •11.2.2.4. Объединенный газовый закон Мариотта - Гей-Люссака
- •11.2.2.5. Основное уравнение состояния идеального газа (уравнение Менделеева-Клапейрона)
- •11.2.2.6. Закон Авогадро
- •11.2.2.7. Закон Дальтона
- •11.3. Молекулярно-кинетический смысл абсолютной температуры
- •11.4. Экспериментальное подтверждение молекулярно-кинетической теории газов (опыт Штерна)
- •12.1. Распределение энергии по степеням свободы
- •12.2. Вероятность и флюктуации. Распределение молекул (частиц) по абсолютным значениям скорости. Распределение Максвелла. Скорости теплового движения частиц. Средняя длина свободного пробега молекул
- •12.3. Распределение Больцмана. Барометрическая формула
- •12.4. Внутренняя энергия и теплоемкости идеального газа. Классическая теория теплоемкостей
- •Формулы кинетической энергии молекул газа в зависимости от числа степеней свободы
- •13.1. Первое начало термодинамики
- •13.1.1. Первое начало термодинамики в применении к изопроцессам в идеальных газах
- •13.1.1.1. Изотермический процесс
- •13.1.1.2. Изобарический процесс
- •13.1.1.3. Изохорический процесс
- •13.1.1.4. Адиабатический процесс
- •13.2. Обратимые, необратимые и круговые процессы (циклы)
- •13.3. Цикл Карно. Максимальный кпд тепловой машины
- •13.4. Энтропия системы и её свойства. Определение изменения энтропии системы, совершающей какой-либо изопроцесс
- •1. Изотермический.
- •2. Изобарический.
- •3. Изохорический.
- •4. Адиабатический.
- •13.5. Второе начало термодинамики. Термодинамические потенциалы
- •13.5.1. Второе начало термодинамики
- •13.5.2. Термодинамические потенциалы
- •13.6. Третье начало термодинамики. Применения термодинамики
- •14.1. Термодинамика неравновесных процессов
- •14.2. Закон сохранения массы в термодинамике неравновесных процессов
- •14.3. Закон сохранения импульса в термодинамике неравновесных процессов
- •14.4. Закон сохранения энергии в термодинамике неравновесных процессов
- •14.5. Уравнение баланса энтропии
- •15.1. Реальные газы. Молекулярные силы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальны изотермы реальных газов
- •Критическая температура и температура кипения некоторых жидкостей
- •15.2. Внутренняя энергия реального газа
- •15.3. Эффект Джоуля - Томсона. Сжижение газов
- •15.4. Фазы и фазовые превращения. Фазовые диаграммы. Условия равновесия фаз
- •15.5. Уравнение Клапейрона-Клаузиуса. Метастабильные состояния. Критическая точка
- •15.6. Тройная точка. Фазовые переходы 1-го и 2-го рода
- •16.1. Понятие о физической кинетике. Вязкость жидкостей и газов. Коэффициент вязкости жидкостей и газов. Динамическая и кинематическая вязкости
- •16.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
- •Кинетические явления (явления переноса). Переносимая величина, уравнение процесса, коэффициент процесса
- •17.1. Строение жидкостей
- •17.2. Свойства жидкостей (вязкость, текучесть, сжимаемость и тепловое расширение)
- •17.3. Поверхностное натяжение. Энергия поверхностного слоя жидкости
- •17.4. Поверхностные явления на границе раздела двух жидкостей или жидкости и твердого тела
- •17.5. Капиллярные явления. Закон Жюрена
- •17.6. Кинематическое описание движения жидкости
- •17.7. Уравнения равновесия и движения жидкости. Стационарное движение идеальной жидкости. Уравнение Бернулли
- •17.8. Гидродинамика вязкой жидкости. Силы внутреннего трения. Коэффициент вязкости. Стационарное течение вязкой жидкости. Уравнение неразрывности. Течение по трубе. Формула Пуазейля
- •17.9. Жидкие кристаллы
- •17.9.1. Строение жидких кристаллов (жк)
- •17.9.2. Физические свойства жидких кристаллов и их применение
- •17.10. Магнитные жидкости
- •17.10.1. Структура магнитных жидкостей (мж)
- •17.10.2. Получение магнитных жидкостей
- •17.10.3. Свойства магнитных жидкостей
- •17.10.4. Применение магнитных жидкостей
- •17.11. Кристаллическое состояние
- •17.11.1. Отличительные черты кристаллического состояния
- •17.11.2 Классификация кристаллов
- •17.11.3 Физические типы кристаллических решеток
- •17.11.4 Тепловое движение в кристаллах. Теплоемкость кристаллов
- •17.11.5. Скорость звука в кристалле. Цепочечная модель
- •Можно записать дифференциальное уравнение
- •Библиографический список Основной
- •Дополнительный
- •Полунин Вячеслав Михайлович
- •Сычев Геннадий Тимофеевич
- •Конспект лекций по молекулярной физике и термодинамике для студентов инженерно-технических специальностей
16.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
Диффузия - процесс взаимного проникновения молекул (атомов) постороннего вещества, обусловленный их тепловым движением. Диффузия всегда сопровождается переносом массы вещества. Она характерна для газов, жидкостей и твердых тел.
Самодиффузия - процесс взаимного проникновения собственных молекул (атомов), обусловленный их тепловым движением.
Согласно закону, экспериментально установленному Фиком, количество вещества dM, перенесенного через площадку dS, за время dt (первый закон Фика) равно
,
(16.15)
где D - коэффициент диффузии. Коэффициент диффузии - физическая величина, числено равная массе переносимого вещества через единичную площадку в единицу времени при градиенте концентрации, равном единице;
dс/dz - скорость изменения (градиент) концентрации в направлении z;
"минус" - показывает, что масса переносится в направлении убывания концентрации данной компоненты.
Пользуясь молекулярно-кинетическими представлениями можно получить
.
(16.16)
Сравнив (16.15) и (16.16), для коэффициента диффузии, будем иметь
. (16.17)
Анализ соотношения (16.17) показывает:
1) так как при постоянной плотности газа <v> T1/2, то и D T1/2;
2) при T = const <> 1/p, следовательно, и D 1/p.
Процесс переноса энергии между контактирующими телами или двумя поверхностями одного и того же тела, возникающий из-за разности температур называется теплопроводностью.
Одной из характеристик теплопроводности является тепловой поток. Тепловой поток - физическая величина, которая показывает, какое количество тепла, переносится в единицу времени через площадь dS при градиенте температуры dT/dz
.
(16.18)
Экспериментально Фурье установил закон теплопроводности, согласно которому количество тепла dQ, перенесенное через площадку dS за время dt, равно
,
(16.19)
где æ - коэффициент теплопроводности. Коэффициент теплопроводности - физическая величина, которая показывает, какое количество тепла, переносится через единичную площадку, в единицу времени при градиенте температур равном единице;
dT/dz - скорость изменения (градиент) температуры в направлении z.
Количество тепла перенесенного через ту же площадку dS за время dt, полученное из молекулярно-кинетических представлений, определяется соотношением
.
(16.20)
Сравнение выше записанных выражений (16.19 и 16.20) позволяет установить формулу для коэффициента теплопроводности
или
.
(16.21)
Из формулы (16.21) видно, что коэффициент теплопроводности не зависит от давления.
Между коэффициентами теплопроводности, диффузии и вязкости существует связь
;
= D;
.
(16.22)
Из выше рассмотренных положений, характерных для явлений переноса, видно, что все три коэффициента , æ, D зависят от <>. Определив какой-либо из коэффициентов можно вычислить <>, а зная <> - диаметр молекулы газа. Определенные таким методом значения диаметров молекул газа называют газокинетическими.
Надо еще раз отметить, что механизмы всех рассмотренных кинетических явлений характерны для газов, жидкостей и твердых тел.
Полученные результаты рассмотренных явлений переноса представлены в табл. 16.1.