
- •-ХКолебания и волны. Звук. Ультразвук.
- •3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •Закон Вебера-Фехнера.
- •Децибельная шкала
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •Аускультация
- •Перкуссия
- •Фонокардиография
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •Электромагнитные колебания и волны.
- •4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
- •6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
- •7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •Медицинская оптика
- •1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
- •5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
- •Квантовая физика.
- •2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
- •3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
- •4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
- •5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
- •7. Применение люминесценции в медико-биологических исследованиях.
- •8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
- •9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
- •11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
- •12. Применение лазеров в медицине.
- •13. Электронный парамагнитный резонанс. Эпр в медицине.
- •14. Ядерный магнитный резонанс. Использование ямр в медицине.
- •Ионизирующие излучения
- •1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
- •4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
- •5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
- •6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
- •8. Получение и применение радиоактивных препаратов для диагностики и лечения.
- •9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
- •10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
- •Биомеханика.
- •1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
- •2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
- •3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
- •4. Изотонический режим работы мышц. Статическая работа мышц.
- •5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
- •6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
- •7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
- •8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
- •9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
- •Биофизика цитомембран и электрогенеза
- •1. Явление диффузии. Уравнение Фика.
- •2. Строение и модели клеточных мембран
- •3. Физические свойства биологических мембран
- •4. Концентрационный элемент и уравнение Нернста.
- •5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
- •7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
- •8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
- •10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •Биофизика рецепции.
- •1. Классификация рецепторов.
- •2. Строение рецепторов.
- •3. Общие механизмы рецепции. Рецепторные потенциалы.
- •4. Кодирование информации в органах чувств.
- •5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
- •Биофизические аспекты экологии.
- •1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
- •2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
- •Элементы теории вероятности и математической статистики.
- •Свойства выборочного среднего
6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
Диатермия – электротерапевтический метод, основанный на использовании высокочастотного переменного электрического тока, который пропускается через ткань и используется в физиотерапевтических процедурах. Сопровождается теплообразованием. При диатермии применяют ток частотой около 1 мгц со слабозатухающими колебаниями, напряжение 100-150 В; сила тока несколько ампер. В основе физиологического действия диатермии лежит в основном ее тепловой эффект. В соответствии с законом Джоуля Ленца количество выделяемого при диатермии тепла будет пропорционально квадрату силы тока в тканях. Поскольку ткани организма неоднородны по своим электрическим свойствам, то и теплообразование в них будет различным. При поперечном расположении электродов поверхностные ткани, имеющие высокое омическое сопротивление, будут нагреваться сильнее, чем глубоколежащие ткани. УВЧ-терапия. Ультравысокочастотная (УВЧ) терапия- это воздействие на ткани переменным электромагнитным полем ультравысокой частоты (40,68 или 27,12 мГц), причем преимущество отдается воздействию электрического поля, а не магнитного. За счет этого в тканях возникают токи смещения и токи проводимости. Для того чтобы оценить эффективность действия УВЧ, необходимо рассчитать количество теплоты, выделяющейся в проводниках и диэлектриках. В итоге получим, что выделяемое количество теплоты пропорционально квадрату эффективной напряженности электрического поля. Она также зависит и от другим характеристик. Данная методика широко применяется в физиотерапии.
Индуктотермия Индуктотермия – метод электролечения, в основе которого лежит воздействие на организм переменным магнитным полем (точнее, преимущественно магнитной составляющей электромагнитного поля) высокой частоты (3-30 МГц). Суть метода заключается в образовании действующего на организм переменного магнитного поля. Как известно, магнитные поля, пересекая проводники, наводят (индуктируют) в них электрический ток. В теле человека при действии высокочастотных магнитных полей возникают хаотические вихревые токи (токи Фуко). Одним из наиболее характерных свойств их является высокое теплообразование. Количество тепла, образующегося под действием высокочастотного магнитного поля, согласно закону Джоуля – Ленца, прямо пропорционально квадрату частоты колебаний, квадрату напряженности магнитного поля и удельной проводимости ткани. Аналогично диатермии при индуктотермии больше тепла образуется в тканях с хорошей электропроводностью. Неотъемлемым от теплового является осцилляторный компонент действия индуктотермии, который проявляется физико-химическими изменениями в клетках и тканях, субклеточных структурах. Чем выше интенсивность воздействия, тем осцилляторный эффект проявляется слабее.
Микроволновая терапия. Метод электролечения, основанный на воздействии на больного электромагнитных колебаний с длиной волны от 1 мм до 1 м (или соответственно с частотой 300-30000 МГц). Микроволны занимают промежуточное положение между электромагнитными волнами ультравысокочастотного диапазона и инфракрасными лучами. Поэтому по некоторым своим физическим свойствам они приближаются к световой, лучистой энергии. Они могут, как свет, отражаться, преломляться, рассеиваться и поглощаться, их можно концентрировать в узкий пучок и использовать для локального направленного воздействия. Попадая на тело человека, 30-60 % микроволн поглощается тканями организма, остальная часть отражается. Электромагнитная волна поляризует молекулы вещества и переориентирует их. Также электромагнитная волна воздействует на ионы биологических систем и вызывает переменный ток проводимости. Все это приводит к нагреванию вещества. Наряду с этим имеет место и специфический осцилляторный эффект. Т.к. все перечисленные выше процессы ведут нагреванию внутренних сред организма, то конечный эффект будет одинаков. Под влиянием этих терапий происходит расширение кровеносных сосудов, усиливается кровоток, уменьшается спазм гладкой мускулатуры, нормализуются процессы торможения и возбуждения нервной системы, ускоряется прохождение импульсов по нервному волокну, изменяется белковый, липидный, углеводный обмен; стимулируется функция симпатико-адреналовой системы, оказывается противовоспалительное, спазмолитическое, гипосенсибилизирующее, обезболивающее действие.