
- •-ХКолебания и волны. Звук. Ультразвук.
- •3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •Закон Вебера-Фехнера.
- •Децибельная шкала
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •Аускультация
- •Перкуссия
- •Фонокардиография
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •Электромагнитные колебания и волны.
- •4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
- •6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
- •7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •Медицинская оптика
- •1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
- •5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
- •Квантовая физика.
- •2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
- •3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
- •4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
- •5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
- •7. Применение люминесценции в медико-биологических исследованиях.
- •8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
- •9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
- •11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
- •12. Применение лазеров в медицине.
- •13. Электронный парамагнитный резонанс. Эпр в медицине.
- •14. Ядерный магнитный резонанс. Использование ямр в медицине.
- •Ионизирующие излучения
- •1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
- •4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
- •5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
- •6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
- •8. Получение и применение радиоактивных препаратов для диагностики и лечения.
- •9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
- •10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
- •Биомеханика.
- •1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
- •2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
- •3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
- •4. Изотонический режим работы мышц. Статическая работа мышц.
- •5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
- •6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
- •7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
- •8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
- •9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
- •Биофизика цитомембран и электрогенеза
- •1. Явление диффузии. Уравнение Фика.
- •2. Строение и модели клеточных мембран
- •3. Физические свойства биологических мембран
- •4. Концентрационный элемент и уравнение Нернста.
- •5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
- •7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
- •8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
- •10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •Биофизика рецепции.
- •1. Классификация рецепторов.
- •2. Строение рецепторов.
- •3. Общие механизмы рецепции. Рецепторные потенциалы.
- •4. Кодирование информации в органах чувств.
- •5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
- •Биофизические аспекты экологии.
- •1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
- •2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
- •Элементы теории вероятности и математической статистики.
- •Свойства выборочного среднего
6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
Уравнение Пуазёйля — закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения.
Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиентудавления в трубе) и четвёртой степени радиуса (диаметра) трубы:
Где Q — объемный секундный расход жидкости; R — радиус трубопровода; p1-p2— перепад давлений на трубке; n—коэффициент трения; L— длина трубки.
Закон Пуазёйля работает только при ламинарном течениии при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развитияламинарного теченияв трубке.
Гидравлическое
сопротивление прямо
пропорционально длине сосуда и вязкости
крови и обратно пропорционально радиусу
сосуда в 4-й степени, то есть больше всего
зависит от просвета сосуда
, а также от
состояния стенок сосудов и от их
эластичности.
Так как наибольшим сопротивлением обладаютартериолы,общее периферическое сопротивление сосудов(ОПСС)зависит главным образом от их тонуса.Различают центральные механизмы регуляции тонуса артериол (нервные и гормональные влияния) и местные (миогенная , метаболическая и эндотелиальная регуляция).
На артериолы оказывают постоянный тонический сосудосуживающий эффектсимпатические нервы. Основные гормоны, в норме участвующие в регуляции тонуса артериол, - этоадреналини норадреналин.
Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока - постоянство кровотока при меняющемся перфузионном давлении.
Метаболическая регуляция обеспечивает расширение сосудов приповышении основного обмена(за счет выбросааденозинаипростагландинов) игипоксии(также за счет выделения простагландинов).
7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
Для движения жидкости по сосудам необходима энергия, создающая давление.
Жидкость двигается из мест с большим давлением в места с меньшим давлением.
Скорость течения жидкости зависит от суммарного поперечного сечения сосудов.
Чем меньше суммарное поперечное движение сосудов, тем больше скорость течения жидкости.
Один и тот же объем жидкости проходит с большей скоростью более узкие участки, чем более широкие.
Следствим несжимаемости жидкости является ее свойство: чем уже русло, тем больше
скорсть течения. Это свойство описывается:
Уравнением неразрывности: S1V1 = S2V2, или SV=Const
Здесь S-площадь поперечного сечения потока,V-средняя скорость жидкости в этом сечении.
В спокойном состоянии человека скорость кровотока в аорте – порядка V1=0,4м/с.Скорость в капиллярах- V2=0,5 мм/c.Разница значений примерно в 800 раз. Следовательно, если площадь сечения аорты S1=4см2,то общая площадь поперечных сечений капилляров большого и малого кругов кровообращения составляет S2=3200см2.
Оценим степень ветвления общего потока крови в системе капилляров.Диаметр капилляра d=10мкм=10 -3 см. Следовательно,площадь его сечения S=пd 2/4=0,78*10см 2. Таким образом,кровь из аорты разветвляется в системе капилляров на N=S2/s=3,2*103/0,78*10 -6=4,1*10 9 штук.
Уравнение Бернуллисоответствует
закону сохранения механической энергии
при движении жидкости или газа и верно
в той степени, в которой потери на трение
малы. Оно имеет следующий вид:=const
Здесь p0– полное
давление. Величинаp–
это давление, которое поток оказывает
на стенки; его называют статическим
давлением. СлагаемоеpV2/2
называется динамическим давлением.Слагаемоеpghсоответствует
тому вкладу в общее давлениеp0,
которое создается участками потока,
приподнятыми на высотуh,
если таковые имеются.p-
плотность жидкости;V–
ее скорость.
статическое давление в приподнятых участках: p2 <p1, а в опущенных – наоборот,p3 >p1.
Применительно к системе кровообращения, если p1– давление, создаваемое сердцем, работающим на высотеh= 0, то все, что находится выше этого уровня, имеет пониженное давление (а это,в частности, мозг), а все, что ниже (ноги,например) – давление выше, чем то, которое создает работающее сердце. Для мозга слагаемоеpghимеет величину порядка –30 мм рт. столба, а для ног – порядка +110 мм рт. столба. Система кровообращения имеет механизмы регулирования, вносящие поправки на снабжение кровью органов, находящихся в неравных условиях.
_______________________________________________________________________________________