
- •-ХКолебания и волны. Звук. Ультразвук.
- •3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •Закон Вебера-Фехнера.
- •Децибельная шкала
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •Аускультация
- •Перкуссия
- •Фонокардиография
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •Электромагнитные колебания и волны.
- •4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
- •6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
- •7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •Медицинская оптика
- •1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
- •5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
- •Квантовая физика.
- •2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
- •3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
- •4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
- •5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
- •7. Применение люминесценции в медико-биологических исследованиях.
- •8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
- •9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
- •11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
- •12. Применение лазеров в медицине.
- •13. Электронный парамагнитный резонанс. Эпр в медицине.
- •14. Ядерный магнитный резонанс. Использование ямр в медицине.
- •Ионизирующие излучения
- •1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
- •4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
- •5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
- •6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
- •8. Получение и применение радиоактивных препаратов для диагностики и лечения.
- •9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
- •10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
- •Биомеханика.
- •1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
- •2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
- •3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
- •4. Изотонический режим работы мышц. Статическая работа мышц.
- •5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
- •6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
- •7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
- •8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
- •9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
- •Биофизика цитомембран и электрогенеза
- •1. Явление диффузии. Уравнение Фика.
- •2. Строение и модели клеточных мембран
- •3. Физические свойства биологических мембран
- •4. Концентрационный элемент и уравнение Нернста.
- •5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
- •7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
- •8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
- •10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •Биофизика рецепции.
- •1. Классификация рецепторов.
- •2. Строение рецепторов.
- •3. Общие механизмы рецепции. Рецепторные потенциалы.
- •4. Кодирование информации в органах чувств.
- •5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
- •Биофизические аспекты экологии.
- •1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
- •2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
- •Элементы теории вероятности и математической статистики.
- •Свойства выборочного среднего
2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
Деформа́ция— изменение размеров, формы и конфигурации тела в результате действия внешних или внутренних сил. виды деформации:
растяжение-сжатие– вид деформации тела, возникающий в том случае, если нагрузка к нему прикладывается по его продольной оси
сдвиг– деформация тела, вызванная касательными напряжениями
изгиб- деформация, характеризующаяся искривлением оси или сединной поверхности деформируемого объекта под действием внешних сил.
кручение- возникает в том случае, если нагрузка прикладывается к телу в виде пары сил в его поперечно плоскости.
Зако́н Гу́ка — уравнение теории упругости, связывающеенапряжениеидеформациюупругой среды. В словесной форме закон звучит следующим образом:
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для
тонкого растяжимого стержня закон Гука
имеет вид:
Здесь F — сила натяжения стержня, Δl — абсолютное удлинение (сжатие) стержня, а k называется коэффициентом упругости (или жёсткости).
Коэффициент
упругости зависит
как от свойств материала, так и от
размеров стержня. Можно выделить
зависимость от размеров стержня (площади
поперечного сечения S и длины L),
записав коэффициент упругости как
Коэффициент жёсткостиравенсиле, вызывающей единичное перемещение в характерной точке (чаще всего вточке приложения силы).
Модуль упругости — общее название нескольких физических величин, характеризующих способностьтвёрдого тела(материала, вещества)упруго деформироватьсяпри приложении к нимсилы.
Абсолютно твердых тел в природе нет, реальные твердые тела могут немного "пружинить" - это и есть упругая деформация. У реальных твердых тел есть предел упругой деформации, т.е. такой предел после которого след от надавливания уже останется и сам не исчезнет.
Свойства костных тканей. Кость является твердым телом, для которого основными свойствами являются прочность и упругость.
Прочность кости - это способность противостоять внешней разрушающей силе. Количественно прочность определяется пределом прочности и зависит от конструкции и состава костной ткани. Каждая кость имеет специфическую форму и сложную внутреннюю конструкцию, позволяющую выдерживать нагрузку в определенной части скелета. Изменение трубчатой структуры кости снижает ее механическую прочность. На прочность существенно влияет и состав кости. При удалении минеральных веществ кость становится резиноподобной, а при удалении органических веществ - хрупкой.
Упругость кости - это свойство приобретать исходную форму после прекращения воздействия факторов внешней среды. Она так же, как и прочность зависит от конструкции и химического состава кости.
3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
Мы́шечными тка́нями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма и состоят из мышечных волокон.
Мышечное волокно представляет собой вытянутую клетку. В состав волокна входят его оболочка - сарколемма, жидкое содержимое - саркоплазма, ядро, митохондрии, рибосомы, сократительные элементы - миофибриллы, а также содержащий ионы Са2+, - саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, по которым внутрь клетки проникает потенциал действия при ее возбуждении.
Функциональной единицей мышечного волокна является миофибрилла. Повторяющаяся структура в составе миофибриллы называется саркомером. Миофибриллы содержат 2 вида сократительных белков: тонкие нити актина и вдвое более толстые нити миозина. Сокращение мышечного волокна происходит благодаря скольжению миозиновых филаментов по актиновым. При этом перекрывание филаментов увеличивается и саркомер укорачивается.
Главная функция мышечного волокна - обеспечение мышечного сокращения.
Преобразование энергии при мышечном сокращении. Для сокращения мышцы используется энергия,освобождающаяся при гидролизе АТФ актомиозином,причем процесс гидролиза тесно сопряжен с сократительным процессом. По количеству выделяемого мышцей тепла можно оценить эффективность преобразования энергии при сокращении.. При укорочении мышцы скорость гидролиза повышается в соответствии с ростом производимой работы. освобождаемой при гидролизе энергии достаточно для обеспечения только совершаемой работы, но не полной энергопродукции мышцы.
Коэффициент полезного действия(кпд) мышечной работы (r) представляет собой отношение величины внешней механической работы (W) к общему количеству выделенной в виде тепла (Е) энергии:
Наиболее высокое значение кпд изолированной мышцы наблюдается при внешней нагрузке, составляющей около 50% от максимальной величины внешней нагрузки. Производительность работы (R) у человека определяют по величине потребления кислорода в период работы и восстановления по формуле:
где 0,49 — коэффициент пропорциональности между объемом потребленного кислорода и выполненной механической работой, т. е. при 100% эффективности для выполнения работы, равной 1 кгс․м(9,81Дж), необходимо 0,49млкислорода.
Двигательное действие / КПД
Ходьба/23-33%; Бег со средней скоростью/22-30%; Езда на велосипеде/22-28%; Гребля/15-30%;
Толкание ядра/27%; Метание/24%; Поднятие штанги/8-14%; Плавание/ 3%.