
- •-ХКолебания и волны. Звук. Ультразвук.
- •3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •Закон Вебера-Фехнера.
- •Децибельная шкала
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •Аускультация
- •Перкуссия
- •Фонокардиография
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •Электромагнитные колебания и волны.
- •4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
- •6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
- •7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •Медицинская оптика
- •1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
- •5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
- •Квантовая физика.
- •2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
- •3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
- •4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
- •5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
- •7. Применение люминесценции в медико-биологических исследованиях.
- •8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
- •9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
- •11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
- •12. Применение лазеров в медицине.
- •13. Электронный парамагнитный резонанс. Эпр в медицине.
- •14. Ядерный магнитный резонанс. Использование ямр в медицине.
- •Ионизирующие излучения
- •1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
- •4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
- •5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
- •6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
- •8. Получение и применение радиоактивных препаратов для диагностики и лечения.
- •9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
- •10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
- •Биомеханика.
- •1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
- •2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
- •3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
- •4. Изотонический режим работы мышц. Статическая работа мышц.
- •5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
- •6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
- •7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
- •8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
- •9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
- •Биофизика цитомембран и электрогенеза
- •1. Явление диффузии. Уравнение Фика.
- •2. Строение и модели клеточных мембран
- •3. Физические свойства биологических мембран
- •4. Концентрационный элемент и уравнение Нернста.
- •5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
- •7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
- •8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
- •10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •Биофизика рецепции.
- •1. Классификация рецепторов.
- •2. Строение рецепторов.
- •3. Общие механизмы рецепции. Рецепторные потенциалы.
- •4. Кодирование информации в органах чувств.
- •5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
- •Биофизические аспекты экологии.
- •1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
- •2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
- •Элементы теории вероятности и математической статистики.
- •Свойства выборочного среднего
1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
Рентгеновским излучением называют электромагнитные волны длиной = 80 до 10-5нм.
Наиболее длинноволновые излучения перекрываются коротковолновым УФ. По способу получения подразделяются на тормозное и характеристическое.
Механизм тормозного рентгеновского излучения.
Излучение, получаемое в рентгеновской трубке и бетатроне, возникает при торможении электронов в металлической преграде – тормозное рентгеновское излучение. С движением электр зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении магнитная индукция уменьшается и появляется электромагнитная волна. При торможении электрона часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. При торможение ↑ кол-ва электронов, возникает рентгеновское излучение с непрерывным спектром. Спектр волны показывает, как распределена энергия по значению длин волн λ. В каждом из спектров наиболее коротковолновое тормозное излучение, соответствует λmin, возникает, когда энергия, приобретенная электроном, в ускоряющем поле переходит в энергию фотона
еU=hυmax=hc/λmin
λmin=hc/(eU) λmin=1,24/U
λmin – минимальная длина волны, 10-10м
U – напряжение, кВ
Поток рентгеновского излучения: Ф=kIU2Z
U – напряжение на аноде
I – ток в трубке
Z – порядковый номер атома вещества антикатода
K – 10-9 В-1 – коэффициент пропорциональности.
Характеристическое рентгеновское излучение.
Возникает вследствие проникновения ускоренных электронов вглубь атома и вытеснение ими электронов из внутренних слоев. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. Характеристические спектры разных атомов однотипны, не зависят от химического соединения. Возникает при наличии свободного места во внутренних слоях атома, не зависимо от причины, которая его вызвала.
_______________________________________________________________________________________
2. Способы получения рентгеновского излучения: рентгеновская трубка, бетатрон.
Анод (антикатод)
«+»
«
– »
Нить накала Стеклянная
Фокусирующий Рентгеновские вакуумная камера
электрод лучи
Нить накала имеет to поверхности 2000-2500 К, при которой электроны вырываются из нити (явление термоэлектронной эмиссии), эти электроны подхватываются электрическим полем: напряжение, создаваемое высоковольтным источником между катодом и анодом, может регулироваться. Фокусирующий электрод находится в контакте с нитью накаливания. Его задача – искривить силовые линии, чтобы электроны образовали узкий пучок. Антикатод изготовляется из тугоплавкого металла (вольфрам, молибден), торможение электронов сопровождается появлением рентгеновского излучения. Сила тока не велика, определяется числом электронов, вырвавшихся из рентгеновской трубки за сек времени.
Бетатрон – ускоритель электронов. Получаемый в нем поток быстрых электронов направляется на мишень, на которой при торможении электронов возникает поток жесткого рентгеновского излучения. При помощи усиления магнитного поля электроны удерживаются на круговой орбите. Основной объем и масса ускорителя приходятся на обмотки электромагнитов и их ферромагнитные сердечники. Разгон электронов в вакуумно й тороидальной камере.
Тороидальная камера находится в магнитном поле. Если на ось камеры выведен пучок электронов и магнитное поле начинает усиливаться, то происходит явление электромагнитной индукции, и возникает вихрь электромагнитного поля. На электроны действует сила: F=eE, направленная по касательной к оси камеры и разгоняющая их. Также на электрон действует сила Лоренса:F=eVB, направленная в центр камеры. СилаFудерживает электроны на оси камеры. Электроны во время всего цикла разгона остаются на неизменной орбите.
_______________________________________________________________________________________