Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_25-48_2.doc
Скачиваний:
77
Добавлен:
10.04.2015
Размер:
1.11 Mб
Скачать

43. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.

Фотоэффект, эффект Комптона, законы теплового излучения совершенно определенно указывают на корпускулярную природу электромагнитных волн, в частности, видимого света. Интерференция, дифракция и особенно поляризация столь же определенно свидетельствуют о волновой природе света. Отсюда следует вывод, что свет (и вообще любая электромагнитная волна) сочетает как волновые, так и корпускулярные свойства, т.е. обладает корпускулярно – волновым дуализмом.

В 1924 году французский физик Луи де Бройль высказал гипотезу о том, что установленный ранее для фотонов корпускулярно-волновой дуализм присущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию E и импульс, абсолютное значение которого равно p, то с ней связана волна, частота которой ν = E / h и длина волны λ = h / p, где h — постоянная Планка. Эти волны и получили название волн де Бройля.

Физический смысл гипотезы:

Для частиц не очень высокой энергии, движущихся со скоростью v<<c (скорости света), импульс равен p=mv (где m — масса частицы), и λ=h/p=h/mv. Следовательно, длина волны де Бройля тем меньше, чем больше масса частицы и её скорость. Например, частице с массой в 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с м, что лежит за пределами доступной наблюдению области. Поэтому волновые свойства несущественны в механике макроскопических тел. Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~ 1 нм до 10−2 нм, то есть в интервале длин волн рентгеновского излучения. Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей.

Первое подтверждение гипотезы де Бройля было получено в 1927 году в опытах американских физиков К. Дэвиссона и Л. Джермера. Пучок электронов ускорялся в электрическом поле с разностью потенциалов 100—150 В (энергия таких электронов 100—150 эВ, что соответствует нм) и падал на кристалл никеля, играющий роль пространственной дифракционной решётки. Было установлено, что электроны дифрагируют на кристалле, причём именно так, как должно быть для волн, длина которых определяется соотношением де Бройля.

Другие экспериментальные подтверждения гипотезы:

-Опыт Дж. П. Томсона по дифракции электронов на металлической фольге.

-Эффект Рамзауэра аномального уменьшения сечения рассеяния электронов малых энергий атомами аргона.

-Дифракция нейтронов на кристаллах (опыты Г. Хальбана, П. Прайсверка и Д. Митчелла).

44. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.

Электро́нный микроско́п (ЭМ) — прибор, позволяющий получать изображение объектов с максимальным увеличением до 106 раз, благодаря использованию вместо светового потока пучка электронов с энергиями 30÷200 кЭв и более. Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может составлять несколько ангстрем. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля.

Виды электронных микроскопов

-Просвечивающий электронный микроскоп

-Растровый электронный микроскоп

-Растровый просвечивающий электронный микроскоп

-Растровый туннельный микроскоп

Принцип действия ЭМ

Пучок электронов, источником к-рых служит термокатод, формируется в электронной пушке и высоковольтном ускорителе и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное "пятно" малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной электронной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя - проекционная - линза формирует изображение на катодолюминесцентном экране, который светится под воздействием электронов. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, плотность, структура и хим. состав объекта меняются от точки к точке. Соответственно изменяется число электронов, прошедших через апертурную диафрагму, а следовательно, и плотность тока на изображении. Возникает амплитудный контраст, к-рый преобразуется в световой контраст на экране. В случае тонких объектов превалирует фазовый контраст, вызываемый изменением фаз волн де Бройля, рассеянных в объекте и интерферирующих в плоскости изображения. Под экраном Э. м. расположен магазин с фотопластинками, при фотографировании экран убирается и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется объективной линзой с помощью плавной регулировки тока, изменяющей её магн. поле. Токами др. электронных линз регулируется увеличение Э. м., к-рое равно произведению увеличений всех линз. При больших увеличениях яркость свечения экрана становится недостаточной и изображение наблюдают с помощью усилителя яркости. Для анализа изображения производятся аналогово-цифровое преобразование содержащейся в нём информации и обработка на компьютере. Усиленное и обработанное по заданной программе изображение выводится на экран компьютера и при необходимости вводится в запоминающее устройство.

Соседние файлы в предмете Медицинская физика