- •Элементы линейной алгебры с приложением
- •Введение
- •1. Определители
- •Определителем матрицы Вназывается число
- •2. Системы линейных уравнений
- •Рассмотрим снова систему (2). Определитель
- •3. Векторы и ленейные операции над ними
- •4. Векторы в декартовой прямоугольной системе координат. Скаряное произведение
- •Доказательство.Используя свойства 3, 4, получим
- •5. Векторное и смешанное произведения
- •Легко проверить исходя из определения векторного произведения, что
- •6. Уравнение плоскости и прямой
- •Решение. Уравнение плоскости, проходящей через точку м1имеет вид
- •7. Матрицы
- •Пусть дана квадратная матрица
- •Покажем, что
- •8. Ранг матрицы. Исследование системы линейных уравнений
- •Рассмотрим матрицу
- •Матрицы
- •Пример 2. Решить систему
- •По формулам Крамера
- •9. Линейные преобразования. Собственные векторы
- •Матрица
- •Так как 0, то1,2,3– ненулевое решение однородной системы
- •В силу следствия из раздела 8
- •В двумерном случае система (3) имеет вид
- •Замечание.Если матрица Аφлинейного преобразованияв базе диагональная:
- •10. Симметрические и ортогональные матрицы Квадратная матрица вида
- •Оказывается, что векторы 1и2перпендикулярны. В самом деле, применяя лемму, получаем
- •Матрица
- •Матрица преобразования в базе1,2диагональная
- •11. Квадратичные формы. Кривые второго парядка
- •12. Положительные матрицы
- •13. Балансовая модель
- •14. Продуктивные матрицы
- •15. Норма матрицы
- •16. Итерационный метод
- •17. Возмущение решений
- •18. Демографический рост
- •19. Регрессионные модели
- •20. Постановка транспортной задачи
- •20.1 Математическая формулировка транспортной задачи.
- •20.2 Базисное распределение в транспортной задаче
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 11
- •21. Техника решения транспортной задачи вручную (метод потенциалов)
- •Вариант 13
- •22. Формализация производственных задач линейного программирования
- •23. Геометрическая интерпретация задач линейного программирования
- •24. Симплексный метод решения задач линейного программирования
- •24.1 Общая формулировка задачи линейного программирования
- •24.2 Заполнение симплексной таблицы по строкам
- •Симплексная таблица
- •24.3 Заполнение симплексной таблицы по столцам
- •24.4 Двойственные задачи, оценки, проблемы.
- •Ответы к вариантам:
- •25. Метод последовательных приближений (метод итерации)
- •26. Условия сходимости итерационного процесса
- •27. Оценка погрешности приближенного процесса метода итерации
- •28. Метод зейделя. Условия сходимости процесса зейделя
- •29. Оценка погрешности процесса зейделя
- •30. Привеление системы линейных уравнений к виду, удобному для итерации
- •31. Исправление элементов приближенной обратной матрицы
- •Задания для самостоятельной работы.
- •Вариант 1
- •Вариант 9
- •Экзаменационные вопросы
8. Ранг матрицы. Исследование системы линейных уравнений
Рассмотрим матрицу

размера m×n. Выберем в А произвольные k строк и k столбцов. Элементы, стоящие на пересечении этих строк и столбцов, составляют квадратную матрицу k-го порядка, определитель которой называется минором k-го порядка матрицы А. Минорами 1-го порядка являются сами элементы матрицы А.
Рангом матрицы А называется наивысший порядок отличных от нуля ее миноров. Ранг матрицы А будем обозначать r (А). Если все элементы А равны нулю, то полагаем r (A)=0. Можно обосновать следующее правило вычисления ранга матрицы: при вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков. Если уже найден минор К-го порядка D, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D (т.е. содержащие его целиком внутри себя). Если они все равны нулю, то ранг матрицы равен k.
Пример 1. Вычислить ранг матрицы
.
Заметим, что в матрице А содержатся отличные от нуля миноры 2-го порядка, например,
.
Оба минора 3-го порядка, окаймляющие минор D, равны нулю:
,
.
Таким
образом,
.
Рассмотрим систему m линейных уравнений с n неизвестными:
(I)
Матрицы
,

называются соответственно матрицей системы и расширенной матрицей системы (I).
Теорема Кронекера-Капелли. Система линейных уравнений (I) совместна тогда и только тогда, когда r (A) = r (A*).
Эту теорему мы доказывать не будем, но укажем, как практически отыскать все решения системы (I).
Пусть
r
(A)
= r
(A*)
= r,
т.е. система (I)
совместна. Если вычислять r
(А) методом окаймляющих миноров, то в
матрице А найдем минор r
–го порядка D
0.
Оставляем в системе лишь те r уравнений, коэффициенты которых вошли в D. Получим систему (2). Оказывается, что каждое из отброшенных уравнений является суммой уравнений (2), умноженных на некоторые числа.
Если r = n, то по теореме Крамера система (2) имеет единственное решение, которое находим, например, по формулам Крамера.
Если же r < n, то в левых частях уравнений системы (2) оставляем те r неизвестных, коэффициенты при которых вошли в D. Остальные члены объявляем свободными и переносим в правые части уравнений. Придавая свободным неизвестным произвольные числовые значения и вычисляя значения остальных неизвестных (например, по формулам Крамера), находим все (бесконечно много) решения системы (2). А значит, и системы (I).
В частности справедливо предположение, что совместная система (I) тогда и только тогда обладает единственным решением, когда r (A) = n, т.е. ранг матрицы А равен числу неизвестных.
Следствие. Система n линейных однородных уравнений с n неизвестными

тогда и только тогда имеет ненулевое значение, когда
.
Пример 2. Решить систему

Здесь
,
,
r (A) = 2 (пример 1),
.
Минор матрицы А*, окаймляющий D не входящий в А, равен 0.

Таким образом, r (A*) = 2 и система совместна. Коэффициенты 3-го уравнения не входят в минор D, поэтому 3-е уравнение можно отбросить (действительно, оно является суммой I-го и 2-го, умноженного на 5). Получим

Коэффициенты при х1 и х4 не входят в D, объявляем х1 и х4 свободными и переносим в правую часть:

