- •Элементы линейной алгебры с приложением
- •Введение
- •1. Определители
- •Определителем матрицы Вназывается число
- •2. Системы линейных уравнений
- •Рассмотрим снова систему (2). Определитель
- •3. Векторы и ленейные операции над ними
- •4. Векторы в декартовой прямоугольной системе координат. Скаряное произведение
- •Доказательство.Используя свойства 3, 4, получим
- •5. Векторное и смешанное произведения
- •Легко проверить исходя из определения векторного произведения, что
- •6. Уравнение плоскости и прямой
- •Решение. Уравнение плоскости, проходящей через точку м1имеет вид
- •7. Матрицы
- •Пусть дана квадратная матрица
- •Покажем, что
- •8. Ранг матрицы. Исследование системы линейных уравнений
- •Рассмотрим матрицу
- •Матрицы
- •Пример 2. Решить систему
- •По формулам Крамера
- •9. Линейные преобразования. Собственные векторы
- •Матрица
- •Так как 0, то1,2,3– ненулевое решение однородной системы
- •В силу следствия из раздела 8
- •В двумерном случае система (3) имеет вид
- •Замечание.Если матрица Аφлинейного преобразованияв базе диагональная:
- •10. Симметрические и ортогональные матрицы Квадратная матрица вида
- •Оказывается, что векторы 1и2перпендикулярны. В самом деле, применяя лемму, получаем
- •Матрица
- •Матрица преобразования в базе1,2диагональная
- •11. Квадратичные формы. Кривые второго парядка
- •12. Положительные матрицы
- •13. Балансовая модель
- •14. Продуктивные матрицы
- •15. Норма матрицы
- •16. Итерационный метод
- •17. Возмущение решений
- •18. Демографический рост
- •19. Регрессионные модели
- •20. Постановка транспортной задачи
- •20.1 Математическая формулировка транспортной задачи.
- •20.2 Базисное распределение в транспортной задаче
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 11
- •21. Техника решения транспортной задачи вручную (метод потенциалов)
- •Вариант 13
- •22. Формализация производственных задач линейного программирования
- •23. Геометрическая интерпретация задач линейного программирования
- •24. Симплексный метод решения задач линейного программирования
- •24.1 Общая формулировка задачи линейного программирования
- •24.2 Заполнение симплексной таблицы по строкам
- •Симплексная таблица
- •24.3 Заполнение симплексной таблицы по столцам
- •24.4 Двойственные задачи, оценки, проблемы.
- •Ответы к вариантам:
- •25. Метод последовательных приближений (метод итерации)
- •26. Условия сходимости итерационного процесса
- •27. Оценка погрешности приближенного процесса метода итерации
- •28. Метод зейделя. Условия сходимости процесса зейделя
- •29. Оценка погрешности процесса зейделя
- •30. Привеление системы линейных уравнений к виду, удобному для итерации
- •31. Исправление элементов приближенной обратной матрицы
- •Задания для самостоятельной работы.
- •Вариант 1
- •Вариант 9
- •Экзаменационные вопросы
24. Симплексный метод решения задач линейного программирования
24.1 Общая формулировка задачи линейного программирования
Задачи линейного программирования могут быть сведены к канонической форме. Введем обозначения:
xj – искомые неизвестные, переменные величины (j = 1,…., n);
aij – коэффициенты при неизвестных в уравнениях и неравенствах исходных ограничений;
bi - величина ограничения в соответствующем уравнении или неравенстве;
сj – коэффициенты, с которыми неизвестные хj входят в целевую функцию.
Формулировка задачи на максимум при n неизвестных дает функцию цели вида
F = c1x1 + c2x2 + ….+ cjxj +….+ cnxn max.
Если мы имеем дело с канонической формой, то исходные ограничения задаются равенствами (в количестве m), т.е.

Выделяются требования неотрицательности неизвестных хj, т.е.
хj > 0.
Если мы имеем дело с производственными задачами, то ограничения в них обычно принимают форму неравенств (хотя бывают и равенства). Функция цели формулируется в них как на максимум, так и на минимум.
Тогда в общем виде и не в канонической форме задача линейного программирования записывается так:
F=c1x1+c2x2+...+cjxj+….+cnxn→max(min).

От общей формулировки задачи линейного программирования можно перейти к канонической.
Если в ограничениях не все значения bi положительны, т.е. имеются некоторые bi < 0, то необходимо все члены соответствующего уравнения (неравенства) умножить на (-1).
Чтобы преобразовать ограничение, записанное в форме неравенства, его превращают в уравнение. Для этого в него добавляется фиктивное неизвестное. При этом стараются в каждое неравенство ограничения ввести собственную фиктивную переменную, знак которой зависит от вида неравенства. Так, в неравенстве вида «<» фиктивные переменные вводятся со знаком плюс, а в неравенства вида «>» - со знаком минус.
В результате, после преобразование любой системы неравенств в систему симплексных уравнений, количество неизвестных в последней всегда будет больше количество уравнений. Кроме того, образуется единичная подматрица. С помощью этой подматрицы имеется возможность получения в исходной симплексной таблице допустимого решения и проверки его на оптимальность.
Примечание
Анализ системы (определение ранга матрицы) при больших ее размерах может оказаться очень трудоемким. Поэтому целесообразно сразу применять симплексную процедуру, а не отыскивать линейно независимые уравнения.
24.2 Заполнение симплексной таблицы по строкам
В первой верхней строке симплексной таблицы записываются показатели критерия оптимальности, т.е. коэффициенты при неизвестных в уравнении целевой функции F.
Вторая строка симплексной таблицы называется шапкой матрицы. В ней указываются номера всех неизвестных (основных и фиктивных), входящих в данную систему.
Симплексная таблица
|
|
|
|
Показатели критерия оптимальности |
|
|
| ||||
|
с0 |
рk |
х0 |
Шапка матрицы (номера неизвестных хj) |
|
|
| ||||
|
Показатели критерия опти-мальности при неизвестных хj вошедших в план |
Номера неизвестных хj вошедших в план |
Итоговый столбец |
Основание матрицы (коэффициенты при неизвестных хj в матрице ограничений) |
Сумма элементов по строкам |
Отношение элементов столбца х0 к элементам ключевого столбца |
Коэффициент для пересчета элементов матрицы | ||||
|
|
|
Значе-ние F |
Целевая строка (двойственные оценки) |
|
|
| ||||
Далее идут строки, основная часть которых занята коэффициентами при неизвестных в уравнениях исходных условий. Этих строк должно быть в матрице столько, сколько в данной задаче ограничений, или столько, сколько дополнительных неизвестных.
Последняя строка носит название целевой строки и заполняется двойственными оценками.
