Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции по физике / 5.4.Фотоэффект

.doc
Скачиваний:
43
Добавлен:
09.04.2015
Размер:
86.02 Кб
Скачать

§ 3. Фотоэффект

Внешний фотоэффект – это явление вырывания электронов из твердых и жидких тел под действием света.

Обнаружил явление фотоэффекта Генрих Герц (1857 – 1894) в 1887 году. Он заметил, что проскакивание искры между шариками разрядника значительно облегчается, если один из шариков осветить ультрафиолетовыми лучами.

Затем в 1888-1890-х годах фотоэффект исследовал Александр Григорьевич Столетов (1839 – 1896).

Он установил, что:

  • наибольшее действие оказывают ультрафиолетовые лучи;

  • с ростом светового потока растет фототок;

  • заряд частиц, вылетающих из твердых и жидких тел под действием света отрицателен.

Параллельно со Столетовым фотоэффект исследовал немецкий ученый Филипп Ленард (1862 – 1947).

Они и установили основные законы фотоэффекта.

Прежде чем сформулировать эти законы, рассмотрим современную схему для наблюдения и исследования фотоэффекта. Она проста. В стеклянных баллон впаяны два электрода (катод и анод), на которые подается напряжение U. В отсутствии света амперметр показывает, что тока в цепи нет.

Когда катод освещается светом даже при отсутствии напряжения между катодом и анодом амперметр показывает наличие небольшого тока в цепи – фототока. То есть электроны, вылетевшие из катода, обладают некоторой кинетической энергией и достигают анода «самостоятельно».

При увеличении напряжения фототок растет.

Зависимость величины фототока от величины напряжения между катодом и анодом называется вольтамперной характеристикой.

Она имеет следующий вид. При одной и той же интенсивности монохроматического света с ростом напряжения ток сначала растет, но затем его рост прекращается. Начиная с некоторого значения ускоряющего напряжения, фототок перестает изменяться, достигая своего максимального (при данной интенсивности света) значения. Этот фототок называется током насыщения.

Чтобы «запереть» фотоэлемент, то есть фототок уменьшить до нуля, необходимо подать «запирающее напряжение» . В этом случае электростатическое поле совершает работу и тормозит вылетевшие фотоэлектроны

. (1)

Это означает, что ни один из вылетающих из металла электронов не достигает анода, если потенциал анода ниже потенциала катода на величину .

Эксперимент показал, что при изменении частоты падающего света начальная точка графика сдвигается по оси напряжений. Из этого следует, что величина запирающего напряжения, а, следовательно, кинетическая энергия и максимальная скорость вылетающих электронов, зависят от частоты падающего света.

Первый закон фотоэффекта. Величина максимальной скорости вылетающих электронов зависит от частоты падающего излучения (растет с ростом частоты) и не зависит от его интенсивности.

Если сравнить вольтамперные характеристики, полученные при разных значениях интенсивности (на рисунке I1 и I2) падающего монохроматического (одночастотного) света, то можно заметить следующее.

Во-первых, все вольтамперные характеристики берут начало в одной и той же точке, то есть, при любой интенсивности света фототок обращается в ноль при конкретном (для каждого значения частоты) задерживающем напряжении . Это является еще одним подтверждением верности первого закона фотоэффекта.

Во-вторых. При увеличении интенсивности падающего света характер зависимости тока от напряжения не изменяется, лишь увеличивается величина тока насыщения.

Второй закон фотоэффекта. Величина тока насыщения пропорциональная величине светового потока.

При изучении фотоэффекта было установлено, что не всякое излучение вызывает фотоэффект.

Третий закон фотоэффекта. Для каждого вещества существует минимальная частота (максимальная длина волны) при которой еще возможен фотоэффект.

Эту длину волны называют «красной границей фотоэффекта» (а частоту – соответствующей красной границе фотоэффекта).

Через 5 лет после появления работы Макса Планка Альберт Эйнштейн использовал идею дискретности излучения света для объяснения закономерностей фотоэффекта. эйнштейн предположил, что свет не только излучается порциями, но и распространяется и поглощается порциями. Это означает, что дискретность электромагнитных волн – это свойство самого излучения, а не результат взаимодействия излучения с веществом. По Эйнштейну, квант излучения во многом напоминает частицу. Квант либо поглощается целиком, либо не поглощается вовсе. Эйнштейн представил вылет фотоэлектрона как результат столкновения фотона с электроном металла, при котором вся энергия фотона передается электрону. Так Эйнштейн создал квантовую теорию света и, исходя из нее, написал уравнение для фотоэффекта:

.

Здесь – постоянная Планка, – частота, – работа выхода электрона из металла, – масса покоя электрона, v – скорость электрона.

Это уравнение объясняло все экспериментально установленные законы фотоэффекта.

  1. Так как работа выхода электрона из вещества постоянна, то, с ростом частоты, растет и скорость электронов.

  2. Каждый фотон выбивает один электрон. Следовательно, количество выбитых электронов не может быть больше числа фотонов. Когда все выбитые электроны достигнут анода, фототок расти прекращает. С ростом интенсивности света растет и число фотонов, падающих на поверхность вещества. Следовательно, увеличивается число электронов, которые эти фотоны выбивают. При этом растет фототок насыщения.

  3. Если энергии фотоны хватает лишь на совершение работы выхода, то скорость вылетающий электронов будет равна нулю. Это и есть «красная граница» фотоэффекта.

Внутренний фотоэффект наблюдается в кристаллических полупроводниках и диэлектриках. Он состоит в том, что под действием облучения увеличивается электропроводность этих веществ за счет возрастания в них числа свободных носителей тока (электронов и дырок).

Иногда это явление называют фотопроводимостью.

5